The 39th IEEE Real-Time Systems Symposium (RTSS'18)

Schedulability Analysis of Adaptive Variable-Rate Tasks with Dynamic Switching Speeds

Chao Peng¹, Yecheng Zhao², <u>Haibo Zeng²</u>

¹National University of Defense Technology, China ²Virginia Tech, USA

System Model: dAVR tasks

- Motivated by the opportunity to optimize engine operation at runtime
- Schedulability Analysis
 - Partitioning speed space (safe but pessimistic)
 - Partitioning release time space (exact)
- Experimental Evaluation
 - Typically 10%-26% better accuracy than transforming to sAVR tasks

AVR Tasks

- Adaptive Variable-Rate (AVR) tasks
 - Different control strategies at different engine rotation speed intervals
 - Tradeoff between control performance and CPU workload

- Suboptimal with static switching speeds
 - Difference among driving cycles
 - Variations within the same driving cycle

- Data available through connected and Automated Vehicles
 - Access to valuable information by using
 - Various sensing: camera, radar, lidar, ...
 - Communication: V2V, V2I, ...
 - Opportunities to improve vehicle operation
 - Engine control (including switching speeds)

Current approaches: static AVR (sAVR) tasks

- the WCET of a job is a function of the engine speed
- Our proposal: dynamic AVR (dAVR) tasks
 - Reconfigured switching speeds at $\gamma_1, \gamma_2, \ldots$
 - the WCET of a job is a function of the engine speed and release time

 $C_i(t,\omega) = C_{i,k}^m \text{ if } t \in [\gamma_k, \gamma_{k+1}) \land \omega \in (\omega_{i,k}^{m-1}, \omega_{i,k}^m]$

Schedulability Analysis of Periodic Tasks

- AVR job = (release time, engine speed at release time)
- AVR job sequence $\mathcal{A} = [(\sigma_1, \omega_1), \dots, (\sigma_n, \omega_n)]$
- Interference function of AVR job sequence: the cumulative execution request within the interval $[\sigma_1, \sigma_1 + t]$

Response time of periodic task τ_i interfered by AVR task τ_A^*

$$R(\tau_{i}, \tau_{A}^{*}) = \max_{\mathcal{A} \in \tau_{A}^{*}} R(\tau_{i}, \mathcal{A}), \text{ where}$$

$$R(\tau_{i}, \mathcal{A}) = \min_{t>0} \left\{ t \mid C_{i} + \sum_{\tau_{j} \in hp(i)} \left\lceil \frac{t}{T_{j}} \right\rceil C_{j} + \mathcal{A}.I(t) \le t \right\}$$
Infinitely many \mathcal{A} due to continuous spaces of both release time and engine speed

Difference between sAVR task and dAVR task

Many analysis techniques for sAVR tasks are not applicable to dAVR

- Vertices represent a speed partition
 - Each vertex represents a separate speed interval
 - Also desirable to have WCET of each vertex only depends on the release time (but not the speed)
- An edge (v_i, v_j) is added if possible to release two consecutive jobs of type v_i and v_j respectively
 - Labeling it with the minimum and maximum inter-release times

dAVR to dDRT Transformation

Time Interval (ms)	Execution Modes					
		<i>m</i> -th mode	1	2	3	
$[\gamma_1, \gamma_2) = [0, 100)$	$\mathcal{M}_{i,1}$	$\omega_{i,1}^m$ (rpm)	2500	4500	6500	
		$C_{i,1}^m$ (µs)	600	400	200	
		<i>m</i> -th mode	1	2	3	4
$[\gamma_2, \gamma_3) = [100, 200)$	$\mathcal{M}_{i,2}$	$\omega_{i,2}^m$ (rpm)	1500	2500	4500	6500
		$C_{i,2}^{in}$ (µs)	600	400	300	200
		<i>m</i> -th mode	1	2		
$[\gamma_3, \gamma_4) = [200, +\infty)$	$\mathcal{M}_{i,3}$	$\omega_{i,3}^m$ (rpm)	3500	6500	•	
		$\begin{array}{c} \omega_{i,3}^m \ (\mathrm{rpm}) \\ C_{i,3}^m \ (\mu\mathrm{s}) \end{array}$	600	300		

Speed partition
{ [500,1500], [1500,2500], [2500,3500], [3500,4500], [4500,6500] }

 v_1 represents speed interval [500, 1500]

- v_2 represents speed interval [1500,2500]
- v_3 represents speed interval [2500,3500]
- v_4 represents speed interval [3500,4500]
- v_5 represents speed interval [4500,6500]

Time Interval (ms)	WCET (μ s)				
	v_1	v_2	v_3	v_4	v_5
$[\gamma_1, \gamma_2) = [0, 100)$	600	600	400	400	200
$[\gamma_2, \gamma_3) = [100, 200)$	600	400	300	300	200
$[\gamma_3, \gamma_4) = [200, +\infty)$	600	600	600	300	300

dDRT

dAVR

WCET function

Schedulability Analysis based on Transformed dDRT

- Response time analysis based on the transformed dDRT au_D^*
 - dDRT job = (release time, vertex)
 - dDRT job sequence $\mathcal{D} = [(\pi_1, \nu_1), \dots, (\pi_n, \nu_n)]$
 - Interference function of dDRT job sequence $\mathcal{D}.I(t)$
 - Response time of periodic task τ_i interfered by dDRT task τ_D^*

$$R(\tau_i, \tau_D^*) = \max_{\mathcal{D} \in \tau_D^*} R(\tau_i, \mathcal{D}), \text{ where}$$
$$R(\tau_i, \mathcal{D}) = \min_{t>0} \left\{ t \mid C_i + \sum_{\tau_j \in hp(i)} \left\lceil \frac{t}{T_j} \right\rceil C_j + \mathcal{D}.I(t) \le t \right\}$$

Safety

 Intuition: Each vertex presents an interval of engine speeds. Thus, for any dAVR job sequence A, we can always find a dDRT job sequence D such that they have the same interference function.

- Pessimism
 - For engines with maximum speed $\omega^{max} > \omega^{t}$ where ω^{t} depends on the maximum acceleration/deceleration, the analysis is pessimistic
 - Typical engines have $\omega^{\max} > 5.79 \ \omega^{t}$

Remaining Difficulty for Analyzing dDRT Systems

Impractical to directly adopt the following computing equation

$$R(\tau_i, \tau_D^*) = \max_{\mathcal{D} \in \tau_D^*} \frac{R(\tau_i, \mathcal{D}), \text{ where}}{\left\{ t \mid C_i + \sum_{\tau_j \in hp(i)} \left\lceil \frac{t}{T_j} \right\rceil C_j + \mathcal{D}.I(t) \le t \right\}}$$

Still infinitely many \mathcal{D} due to continuous space of release time

Our Intuition:

 If two dDRT job sequences share the same sequence of job WCETs, then the one always with a shorter inter-release time will dominate the other in terms of their interference functions

Construction of Critical dDRT Job Sequence

 Example of constructing common-WCET dDRT job sequence sets

(a) Partitioning release time ranges by the reconfiguration times $\gamma_1 = 0, \gamma_2 = 100, \gamma_3 = 200.$

(b) Resultant four common-WCET dDRT job sequence sets.

- Finding critical dDRT job sequences
 - Idea: the inter-release times are valid but also as tight as possible

1: procedure CONSTRUCTCRITICALJOBSEQUENCE(\mathbb{C})

2: $\widetilde{\mathbb{C}} \leftarrow [(\tilde{c}_1^-, \tilde{c}_1^+, \nu_1), \dots, (\tilde{c}_n^-, \tilde{c}_n^+, \nu_n)];$ 3: $\tilde{c}_n^- \leftarrow c_n^-, \tilde{c}_n^+ \leftarrow c_n^+;$ 4: **for** l = n **to** 2 **do** // Backward Pass

$$\tilde{c}_{l-1} \leftarrow \max(\tilde{c}_l - p^{\max}(\nu_{l-1}, \nu_l), \bar{c}_{l-1});$$

6:
$$\tilde{c}_{l-1}^+ \leftarrow \min(\tilde{c}_l^+ - p^{\min}(\nu_{l-1}, \nu_l), c_{l-1}^+);$$

7:
$$\mathcal{D}^c \leftarrow [(\pi_1^c, \nu_1), \dots, (\pi_n^c, \nu_n)];$$

9: for
$$l = 1$$
 to $n - 1$ do // Forward Pass

10:
$$\pi_{l+1}^c \leftarrow \max(\pi_l^c + p^{\min}(\nu_l, \nu_{l+1}), \tilde{c}_{l+1});$$

11: return \mathcal{D}^c ;

	\mathbb{C}	Line 3		Lines 4–6			Line 8	Lines 9–10		
		\tilde{c}_3^-	\tilde{c}_3^+	\tilde{c}_2^-	\tilde{c}_2^+	\tilde{c}_1^-	\tilde{c}_1^+	π_1^c	π_2^c	π_3^c
	1	57	100	32	75	0	43	43	75	100
	2	100	150	50	100	0	68	68	100	125
	3	125	200	100	165	35	100	100	132	157
\setminus	4	200	215	150	165	85	100	100	150	200

contains invalid job sequence

can't be tighter due to validity

- Schedulability analysis methods
 - **dAVR**: our proposed approach
 - dAVR2sAVR: the sufficient-only analysis by transforming dAVR tasks to sAVR tasks and then apply the existing analysis on sAVR [1]
 - **UB**: the necessary-only analysis proposed in [2]
- Random task systems are generated following [1]
 - 20 Periodic tasks with constrained deadline:
 - period is randomly chosen from [3,100] ms
 - One AVR task: the execution modes are set as [1], with
 - Reconfiguration time interval = 500ms (typical driving cycle sample time)

[1] Biondi et al., "Response-time analysis for real-time tasks in engine control applications," in IEEE/ACM Conference on Cyber-Physical Systems, 2015.
 [2] Biondi et al., "Performance-driven design of engine control tasks," in IEEE/ACM Conference on Cyber-Physical Systems, 2016.

Experimental Results

dAVR always has a higher analysis accuracy than dAVR2sAVR (typically 10%-26% in terms of schedulability ratio)

Schedulability ratio vs. system utilization U – Schedu

Schedulability ratio vs. dAVR utilization fraction ρ_u

50

Schedulability ratio vs. number of modes M – Schedulability ratio vs. number of configurations T

Conclusion and Future Work

- Contributions:
 - Dynamic AVR task model that reconfigures the switching speeds at runtime
 - Response time analysis by partitioning
 - the speed space (sufficient-only)
 - release time space (exact)
- Typically 10%-26% more accurate than transforming it to static AVR
- Future work:
 - The approximation quality of speed partition
 - Optimization of switching speeds at runtime

Thank you!

Email: <u>hbzeng@vt.edu</u>