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Overview

Partitioned Fixed-Priority Scheduling of 
Parallel Tasks Without Preemptions

• Each task is represented by a Direct Acyclic Graph,
and is characterized by

i. a minimum inter-arrival time 𝑇𝑖

ii. a constrained deadline 𝐷𝑖 ≤ 𝑇𝑖

iii. a fixed priority 𝜋𝑖

Each node is characterized

by a WCET 𝐶𝑗
𝑖
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Overview

Partitioned Fixed-Priority Scheduling of 
Parallel Tasks Without Preemptions

• Each node is statically assigned to a core

• Nodes of the same task can be allocated to different cores

Node-to-core Mapping

Core 1 Core 2 Core 3 Core 4
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Overview

Partitioned Fixed-Priority Scheduling of 
Parallel Tasks Without Preemptions

𝑣𝐿𝑃

𝑡

𝑣𝐻𝑃

𝑡

Non-preemptive blocking

As soon a node starts executing, it

cannot be preempted
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Why non-preemptive scheduling?

Predictable management of local memories

Memory Feasibility Analysis of Parallel Tasks 

Running on Scratchpad-Based Architectures

Daniel Casini, Alessandro Biondi, Geoffrey Nelissen and Giorgio Buttazzo

This morning @ RTSS

e.g., nodes can pre-load data from scratchpads

before start executing
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Why non-preemptive scheduling?

Predictable management of local memories

Reduces context-switch overhead

Simplifies WCET Analysis

Use of HW accelerators and GPUs

Can be a good choice for executing

deep neural networks
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Why non-preemptive scheduling?

• We profiled a deep neural network executed by Tensorflow a
8-core Intel i7 machine @ 3.5GHz

More than 34000 nodes where only about 

1.2% of them have execution times larger 

than 100 microseconds
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Overview of the analysis framework

Node-to-core Mapping

Core 1 Core 2 Core 3 Core 4
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Part I:

Response-time analysis for 

parallel tasks
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Intuition

𝑣1

𝑣2

𝑣4

𝑣5

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑟𝑒𝑔𝑖𝑜𝑛
𝑝1

𝑝2

𝑝2 𝑣3

𝑡

𝑣3

𝑣6

𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 𝑟𝑒𝑔𝑖𝑜𝑛

𝑝1

𝑡

𝑣1

𝑣6

𝑣2 𝑣4

𝑣7

𝑣5

• Each core ‘perceives’ the execution of a parallel task as an
interleaved sequence of execution and suspension regions

Suspension regions correspond to
execution regions on a different core

𝑣7
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Intuition

𝑣1
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𝑣6 𝑣7

𝑝2 𝑣3

𝑡

𝑣6

𝑝1

𝑡
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• Paths can be mapped to a self-suspending tasks
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Intuition

𝑣1 𝑣5𝑣3 𝑣6 𝑣7

• Paths can be mapped to a self-suspending tasks

Path

𝐶1 𝐶3 𝐶5 𝐶6 𝐶7

Segmented
SS-tasks

𝑝1

𝑝2

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑟𝑒𝑔𝑖𝑜𝑛

𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 𝑟𝑒𝑔𝑖𝑜𝑛

𝐶1
𝑆𝑆 = 𝐶1 𝐶2

𝑆𝑆 = 𝐶5 𝐶3
𝑆𝑆 = 𝐶7

The length of each execution region directly maps to 
the WCET of a node in the graph
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Intuition

Segmented
SS-tasks

𝑆1
𝑆𝑆 = 𝑅3 𝑆2

𝑆𝑆 = 𝑅6

The length of each suspension region depends on the 
response time of nodes allocated to different cores

Complex inter-core 

dependencies can arise

𝑝2 𝑣3

𝑡

𝑣6

𝑝1

𝑡

𝑣1 𝑣2 𝑣4 𝑣5 𝑣7
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Solution (from Fonseca et al. 2017)

• Recursive algorithm to unfold response-time dependencies:

𝑣1 𝑣3𝑣2 𝑣4 𝑣5 𝑣6 𝑣7

𝑅𝑆𝑆4

𝑆1
𝑆𝑆3 = 𝑅𝑆𝑆4

𝑅𝑆𝑆3

𝑆1
𝑆𝑆2 = 𝑅𝑆𝑆3

𝑅𝑆𝑆2

𝑆1
𝑆𝑆1 = 𝑅𝑆𝑆2

𝑅𝑆𝑆1

𝑝1 𝑝2 𝑝3 𝑝4
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Parallel tasks without preemptions

• We extended this approach to work under non-preemptive
scheduling

Need for a fine-grained analysis for 

non-preemptive self-suspending tasks

Our next contribution
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Motivation

Part II:
Analysis for non-preemptive 

self-suspending tasks
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Overview of the analysis framework

Node-to-core Mapping
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Overview of the analysis for SS-tasks

Two different approaches:

Holistic analysis1

Segment-based analysis2

• Computes the RT of a whole self-suspending task

• Analytically dominates state-of-the-art analysis (Dong et al. 2018)

• Computes the RT of individual segments

Ci = 

all segments

Ci,j Si = 

all segments

Si,j

per-task response time bound

per-segment response time bounds
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Analysis for SS-tasks

Response-time analysis

Interference due to 

higher-priority segments

Non-preemptive blocking due to 

lower-priority segments
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Computing Interference

release

deadline = period

maximum possible release jitter

response time bound

• Interference from higher-priority tasks is accounted by
means of the following worst-case scenario*:

• The response time bound can be initially approximated to the
task’s deadline and iteratively refined

• Holistic and segmented analyses are combined during
the iterative refinement

*Jian-Jia Chen et al., “Many suspensions, many problems: a review of self-suspending tasks 
in real-time systems”, Real-time System Journal. 
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Fine-grained accounting of blocking

• With a multiset approach

∆

𝜏𝐿𝑃

𝑡

𝜏𝐻𝑃

𝑡

multiset

Task release Segment release

Two segmented
SS-tasks

contending for 
the same CPU

Contains the WCET of all
the lower-priority segments

that may block the task 
under analysis in a 
window of length ∆
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Non-preemptive self-suspending tasks

Now we have our analysis!
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Non-preemptive self-suspending tasks

Now we have our analysis!

The RT of a parallel task can be derived from the 

maximum RT of all its paths

𝑅′

𝑅′′

𝑅′′′

𝑹 = 𝐦𝐚𝐱(𝑹′, 𝑹′′, 𝑹′′′)
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Overview of the analysis framework

Node-to-core Mapping
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Overview of the analysis framework

Node-to-core Mapping
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How to partition nodes to cores?
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Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a time, and perform schedulability analysis on a subgraph

1. Strategy for ordering tasks

2. Strategy for ordering cores

Inputs: Output:

1. Node partitioning

Example:

Task under 
analysis

Core 1 Core 2

Core 3 Core 4

Task under 
analysis (during

partitioning)
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Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a time, and perform schedulability analysis on a subgraph

1. Strategy for ordering tasks

2. Strategy for ordering cores

Inputs: Output:

Example:
Core 1 Core 2

Core 3 Core 4Partitioning completed!

1. Node partitioning

Task under 
analysis (during

partitioning)

Task under 
analysis
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Motivation

Experimental Results
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Experimental Study

• Experimental study based on synthetic workload

• We compared against the only previous work targeting
non-preemptive scheduling of parallel tasks, which targets
global scheduling (Serrano et al. 2017)

• Same DAG generator used in [Serrano et al. 2017]

• WCETs randomly generated in (0,100] with

uniform distribution

• Tasks utilizations obtained with U-Unifast

• Tasks periods computed as 𝑇𝑖 = 𝑈𝑖 σ𝑛𝑜𝑑𝑒𝑠 𝐶𝑖,𝑗
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Experimental Results

12 tasks, 16 processors

The higher the better

Utilization
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Experimental Results
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Experimental Results

12 tasks, 16 processors
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Improvement up to 100 percentage points

over [Serrano et al. 2017]

Utilization
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Experimental Results

10 tasks, 8 processors
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Utilization

Our experimental study revelead a similar trend varying

the number of tasks and processor, e.g., 
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Conclusions

1 Methodology for analyzing non-preemptive
parallel tasks as a set of self-suspending tasks

2
Analysis for non-preemptive self-suspending tasks

which analytically dominates the only previous result

3
Partitioning algorithm to allocate nodes

to the available processors

4
Experimental study to assess the improvement in 

terms of schedulability – up to 100 p.p. w.r.t. the only
existing previous work for global scheduling
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Future Work

Deeper investigation of partitioning strategies

Improvement in the analysis precision

Integration of communication delays in the analysis

Memory Feasibility Analysis of Parallel Tasks 

Running on Scratchpad-Based 

Architectures

Daniel Casini, Alessandro Biondi, Geoffrey Nelissen and 
Giorgio Buttazzo

This morning @ RTSS
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