
Partitioned Fixed-Priority 
Scheduling of Parallel Tasks 

Without Preemptions

Daniel Casini*, Alessandro Biondi*, Geoffrey Nelissen†, 
and Giorgio Buttazzo*

* ReTiS Lab, Scuola Superiore Sant’Anna, Pisa, Italy

† CISTER, ISEP, Polytechnic Institute of Porto, Portugal



2Daniel Casini

Overview

Partitioned Fixed-Priority Scheduling of 
Parallel Tasks Without Preemptions

• Each task is represented by a Direct Acyclic Graph,
and is characterized by

i. a minimum inter-arrival time 𝑇𝑖

ii. a constrained deadline 𝐷𝑖 ≤ 𝑇𝑖

iii. a fixed priority 𝜋𝑖

Each node is characterized

by a WCET 𝐶𝑗
𝑖



3Daniel Casini

Overview

• Each task is represented by a Direct Acyclic Graph,
and is characterized by

i. a minimum inter-arrival time 𝑇𝑖

ii. a constrained deadline 𝐷𝑖 ≤ 𝑇𝑖

iii. a fixed priority 𝜋𝑖

Partitioned Fixed-Priority Scheduling of 
Parallel Tasks Without Preemptions

Each node is characterized

by a WCET 𝐶𝑗
𝑖



4Daniel Casini

Overview

Partitioned Fixed-Priority Scheduling of 
Parallel Tasks Without Preemptions

• Each node is statically assigned to a core

• Nodes of the same task can be allocated to different cores

Node-to-core Mapping

Core 1 Core 2 Core 3 Core 4

P
a
ra

lle
l
T
a

s
k
s



5Daniel Casini

Overview

Partitioned Fixed-Priority Scheduling of 
Parallel Tasks Without Preemptions

𝑣𝐿𝑃

𝑡

𝑣𝐻𝑃

𝑡

Non-preemptive blocking

As soon a node starts executing, it

cannot be preempted



6Daniel Casini

Why non-preemptive scheduling?

Predictable management of local memories

Memory Feasibility Analysis of Parallel Tasks 

Running on Scratchpad-Based Architectures

Daniel Casini, Alessandro Biondi, Geoffrey Nelissen and Giorgio Buttazzo

This morning @ RTSS

e.g., nodes can pre-load data from scratchpads

before start executing



7Daniel Casini

Why non-preemptive scheduling?

Predictable management of local memories

Reduces context-switch overhead

Simplifies WCET Analysis

Use of HW accelerators and GPUs

Can be a good choice for executing

deep neural networks



8Daniel Casini

Why non-preemptive scheduling?

• We profiled a deep neural network executed by Tensorflow a
8-core Intel i7 machine @ 3.5GHz

More than 34000 nodes where only about 

1.2% of them have execution times larger 

than 100 microseconds



9Daniel Casini

Overview of the analysis framework

Node-to-core Mapping

Core 1 Core 2 Core 3 Core 4

P
a
ra

lle
l
T
a

s
k
s

Response-time analysis for parallel tasks

Schedulable? (yes/no)

Uniprocessor

analysis for 

SS tasks

S
e

lf
-s

u
s
p

e
n
d
in

g
 

T
a

s
k
s

Uniprocessor

analysis for 

SS tasks

Uniprocessor

analysis for 

SS tasks

Uniprocessor

analysis for 

SS tasks



10Daniel Casini

Overview of the analysis framework

Node-to-core Mapping

Core 1 Core 2 Core 3 Core 4

P
a
ra

lle
l
T
a

s
k
s

Response-time analysis for parallel tasks

Schedulable? (yes/no)

Uniprocessor

analysis for 

SS tasks

S
e

lf
-s

u
s
p

e
n
d
in

g
 

T
a

s
k
s

Uniprocessor

analysis for 

SS tasks

Uniprocessor

analysis for 

SS tasks

Uniprocessor

analysis for 

SS tasks

Part II

Part I

Part III



11Daniel Casini

Overview of the analysis framework

Node-to-core Mapping

Core 1 Core 2 Core 3 Core 4

P
a
ra

lle
l
T
a

s
k
s

Response-time analysis for parallel tasks

Schedulable? (yes/no)

Uniprocessor

analysis for 

SS tasks

S
e

lf
-s

u
s
p

e
n
d
in

g
 

T
a

s
k
s

Uniprocessor

analysis for 

SS tasks

Uniprocessor

analysis for 

SS tasks

Uniprocessor

analysis for 

SS tasks

Part II

Part I

Part III



12Daniel Casini

Part I:

Response-time analysis for 

parallel tasks



13Daniel Casini

Intuition

𝑣1

𝑣2

𝑣4

𝑣5

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑟𝑒𝑔𝑖𝑜𝑛
𝑝1

𝑝2

𝑝2 𝑣3

𝑡

𝑣3

𝑣6

𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 𝑟𝑒𝑔𝑖𝑜𝑛

𝑝1

𝑡

𝑣1

𝑣6

𝑣2 𝑣4

𝑣7

𝑣5

• Each core ‘perceives’ the execution of a parallel task as an
interleaved sequence of execution and suspension regions

Suspension regions correspond to
execution regions on a different core

𝑣7



14Daniel Casini

Intuition

𝑣1

𝑣2

𝑣4

𝑣5

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑟𝑒𝑔𝑖𝑜𝑛
𝑝1

𝑝2

𝑣3

𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 𝑟𝑒𝑔𝑖𝑜𝑛

𝑣6 𝑣7

𝑝2 𝑣3

𝑡

𝑣6

𝑝1

𝑡

𝑣1 𝑣2 𝑣4 𝑣5 𝑣7

• Paths can be mapped to a self-suspending tasks



15Daniel Casini

Intuition

𝑣1 𝑣5𝑣3 𝑣6 𝑣7

• Paths can be mapped to a self-suspending tasks

Path

𝐶1 𝐶3 𝐶5 𝐶6 𝐶7

Segmented
SS-tasks

𝑝1

𝑝2

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑟𝑒𝑔𝑖𝑜𝑛

𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 𝑟𝑒𝑔𝑖𝑜𝑛

𝐶1
𝑆𝑆 = 𝐶1 𝐶2

𝑆𝑆 = 𝐶5 𝐶3
𝑆𝑆 = 𝐶7

The length of each execution region directly maps to 
the WCET of a node in the graph



16Daniel Casini

Intuition

Segmented
SS-tasks

𝑆1
𝑆𝑆 = 𝑅3 𝑆2

𝑆𝑆 = 𝑅6

The length of each suspension region depends on the 
response time of nodes allocated to different cores

Complex inter-core 

dependencies can arise

𝑝2 𝑣3

𝑡

𝑣6

𝑝1

𝑡

𝑣1 𝑣2 𝑣4 𝑣5 𝑣7



17Daniel Casini

Solution (from Fonseca et al. 2017)

• Recursive algorithm to unfold response-time dependencies:

𝑣1 𝑣3𝑣2 𝑣4 𝑣5 𝑣6 𝑣7

𝑅𝑆𝑆4

𝑆1
𝑆𝑆3 = 𝑅𝑆𝑆4

𝑅𝑆𝑆3

𝑆1
𝑆𝑆2 = 𝑅𝑆𝑆3

𝑅𝑆𝑆2

𝑆1
𝑆𝑆1 = 𝑅𝑆𝑆2

𝑅𝑆𝑆1

𝑝1 𝑝2 𝑝3 𝑝4



18Daniel Casini

Parallel tasks without preemptions

• We extended this approach to work under non-preemptive
scheduling

Need for a fine-grained analysis for 

non-preemptive self-suspending tasks

Our next contribution



19Daniel Casini

Motivation

Part II:
Analysis for non-preemptive 

self-suspending tasks



20Daniel Casini

Overview of the analysis framework

Node-to-core Mapping

Core 1 Core 2 Core 3 Core 4

P
a
ra

lle
l
T
a

s
k
s

Response-time analysis for parallel tasks

Schedulable? (yes/no)

Uniprocessor

analysis for 

SS tasks

S
e

lf
-s

u
s
p

e
n
d
in

g
 

T
a

s
k
s

Uniprocessor

analysis for 

SS tasks

Uniprocessor

analysis for 

SS tasks

Uniprocessor

analysis for 

SS tasks



21Daniel Casini

Overview of the analysis for SS-tasks

Two different approaches:

Holistic analysis1

Segment-based analysis2

• Computes the RT of a whole self-suspending task

• Analytically dominates state-of-the-art analysis (Dong et al. 2018)

• Computes the RT of individual segments

Ci = 

all segments

Ci,j Si = 

all segments

Si,j

per-task response time bound

per-segment response time bounds



22Daniel Casini

Overview of the analysis for SS-tasks

Two different approaches:

Holistic analysis1

Segment-based analysis2

• Computes the RT of a whole self-suspending task

• Analytically dominates state-of-the-art analysis (Dong et al. 2018)

• Computes the RT of individual segments

Ci = 

all segments

Ci,j Si = 

all segments

Si,j

per-task response time bound

per-segment response time bounds



23Daniel Casini

Analysis for SS-tasks

Response-time analysis

Interference due to 

higher-priority segments

Non-preemptive blocking due to 

lower-priority segments



24Daniel Casini

Computing Interference

release

deadline = period

maximum possible release jitter

response time bound

• Interference from higher-priority tasks is accounted by
means of the following worst-case scenario*:

• The response time bound can be initially approximated to the
task’s deadline and iteratively refined

• Holistic and segmented analyses are combined during
the iterative refinement

*Jian-Jia Chen et al., “Many suspensions, many problems: a review of self-suspending tasks 
in real-time systems”, Real-time System Journal. 



25Daniel Casini

Fine-grained accounting of blocking

• With a multiset approach

∆

𝜏𝐿𝑃

𝑡

𝜏𝐻𝑃

𝑡

multiset

Task release Segment release

Two segmented
SS-tasks

contending for 
the same CPU

Contains the WCET of all
the lower-priority segments

that may block the task 
under analysis in a 
window of length ∆



26Daniel Casini

Fine-grained accounting of blocking

• With a multiset approach

∆

𝜏𝐿𝑃

𝑡

𝜏𝐻𝑃

𝑡

multiset

Task release Segment release

Two segmented
SS-tasks

contending for 
the same CPU

Contains the WCET of all
the lower-priority segments

that may block the task 
under analysis in a 
window of length ∆



27Daniel Casini

Non-preemptive self-suspending tasks

Now we have our analysis!



28Daniel Casini

Non-preemptive self-suspending tasks

Now we have our analysis!



29Daniel Casini

Non-preemptive self-suspending tasks

Now we have our analysis!

The RT of a parallel task can be derived from the 

maximum RT of all its paths

𝑅′

𝑅′′

𝑅′′′

𝑹 = 𝐦𝐚𝐱(𝑹′, 𝑹′′, 𝑹′′′)



30Daniel Casini

Overview of the analysis framework

Node-to-core Mapping

Core 1 Core 2 Core 3 Core 4

P
a
ra

lle
l
T
a

s
k
s

Response-time analysis for parallel tasks

Schedulable? (yes/no)

Uniprocessor

analysis for 

SS tasks

S
e

lf
-s

u
s
p

e
n
d
in

g
 

T
a

s
k
s

Uniprocessor

analysis for 

SS tasks

Uniprocessor

analysis for 

SS tasks

Uniprocessor

analysis for 

SS tasks



31Daniel Casini

Overview of the analysis framework

Node-to-core Mapping

Core 1 Core 2 Core 3 Core 4

P
a
ra

lle
l
T
a

s
k
s

Response-time analysis for parallel tasks

Schedulable? (yes/no)

Uniprocessor

analysis for 

SS tasks

S
e

lf
-s

u
s
p

e
n
d
in

g
 

T
a

s
k
s

Uniprocessor

analysis for 

SS tasks

Uniprocessor

analysis for 

SS tasks

Uniprocessor

analysis for 

SS tasks

How to partition nodes to cores?



32Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a time, and perform schedulability analysis on a subgraph

1. Strategy for ordering tasks

2. Strategy for ordering cores

Inputs: Output:

1. Node partitioning

Example:

Task under 
analysis

Core 1 Core 2

Core 3 Core 4

Task under 
analysis (during

partitioning)



33Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a time, and perform schedulability analysis on a subgraph

1. Strategy for ordering tasks

2. Strategy for ordering cores

Inputs: Output:

1. Node partitioning

Example:

Task under 
analysis

Core 1 Core 2

Core 3 Core 4

Task under 
analysis (during

partitioning)



34Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a time, and perform schedulability analysis on a subgraph

1. Strategy for ordering tasks

2. Strategy for ordering cores

Inputs: Output:

1. Node partitioning

Example:

Task under 
analysis

Core 1 Core 2

Core 3 Core 4

Task under 
analysis (during

partitioning)



35Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a time, and perform schedulability analysis on a subgraph

1. Strategy for ordering tasks

2. Strategy for ordering cores

Inputs: Output:

Example:
Core 1 Core 2

Core 3 Core 4

Run analysis for parallel tasks

1. Node partitioning

Task under 
analysis (during

partitioning)

Task under 
analysis



36Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a time, and perform schedulability analysis on a subgraph

1. Strategy for ordering tasks

2. Strategy for ordering cores

Inputs: Output:

Example:
Core 1 Core 2

Core 3 Core 4

Run analysis for parallel tasks

Schedulable!

1. Node partitioning

Task under 
analysis (during

partitioning)

Task under 
analysis



37Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a time, and perform schedulability analysis on a subgraph

1. Strategy for ordering tasks

2. Strategy for ordering cores

Inputs: Output:

Example:
Core 1 Core 2

Core 3 Core 4

1. Node partitioning

Task under 
analysis (during

partitioning)

Task under 
analysis



38Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a time, and perform schedulability analysis on a subgraph

1. Strategy for ordering tasks

2. Strategy for ordering cores

Inputs: Output:

Example:
Core 1 Core 2

Core 3 Core 4

1. Node partitioning

Task under 
analysis (during

partitioning)

Task under 
analysis



39Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a time, and perform schedulability analysis on a subgraph

1. Strategy for ordering tasks

2. Strategy for ordering cores

Inputs: Output:

Example:
Core 1 Core 2

Core 3 Core 4

Run analysis for parallel tasks

1. Node partitioning

Task under 
analysis (during

partitioning)

Task under 
analysis



40Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a time, and perform schedulability analysis on a subgraph

1. Strategy for ordering tasks

2. Strategy for ordering cores

Inputs: Output:

Example:
Core 1 Core 2

Core 3 Core 4

Run analysis for parallel tasks

Unschedulable!

1. Node partitioning

Task under 
analysis (during

partitioning)

Task under 
analysis



41Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a time, and perform schedulability analysis on a subgraph

1. Strategy for ordering tasks

2. Strategy for ordering cores

Inputs: Output:

Example:
Core 1 Core 2

Core 3 Core 4

1. Node partitioning

Task under 
analysis (during

partitioning)

Task under 
analysis



42Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a time, and perform schedulability analysis on a subgraph

1. Strategy for ordering tasks

2. Strategy for ordering cores

Inputs: Output:

Example:
Core 1 Core 2

Core 3 Core 4

Run analysis for parallel tasks

1. Node partitioning

Task under 
analysis (during

partitioning)

Task under 
analysis



43Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a time, and perform schedulability analysis on a subgraph

1. Strategy for ordering tasks

2. Strategy for ordering cores

Inputs: Output:

Example:
Core 1 Core 2

Core 3 Core 4

Run analysis for parallel tasks

Schedulable!

1. Node partitioning

Task under 
analysis (during

partitioning)

Task under 
analysis



44Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a time, and perform schedulability analysis on a subgraph

1. Strategy for ordering tasks

2. Strategy for ordering cores

Inputs: Output:

Example:
Core 1 Core 2

Core 3 Core 4

1. Node partitioning

Task under 
analysis (during

partitioning)

Task under 
analysis



45Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a time, and perform schedulability analysis on a subgraph

1. Strategy for ordering tasks

2. Strategy for ordering cores

Inputs: Output:

Example:
Core 1 Core 2

Core 3 Core 4

1. Node partitioning

Task under 
analysis (during

partitioning)

Task under 
analysis



46Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a time, and perform schedulability analysis on a subgraph

1. Strategy for ordering tasks

2. Strategy for ordering cores

Inputs: Output:

Example:
Core 1 Core 2

Core 3 Core 4

1. Node partitioning

Task under 
analysis (during

partitioning)

Task under 
analysis



47Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a time, and perform schedulability analysis on a subgraph

1. Strategy for ordering tasks

2. Strategy for ordering cores

Inputs: Output:

Example:
Core 1 Core 2

Core 3 Core 4Partitioning completed!

1. Node partitioning

Task under 
analysis (during

partitioning)

Task under 
analysis



48Daniel Casini

Motivation

Experimental Results



49Daniel Casini

Experimental Study

• Experimental study based on synthetic workload

• We compared against the only previous work targeting
non-preemptive scheduling of parallel tasks, which targets
global scheduling (Serrano et al. 2017)

• Same DAG generator used in [Serrano et al. 2017]

• WCETs randomly generated in (0,100] with

uniform distribution

• Tasks utilizations obtained with U-Unifast

• Tasks periods computed as 𝑇𝑖 = 𝑈𝑖 σ𝑛𝑜𝑑𝑒𝑠 𝐶𝑖,𝑗



50Daniel Casini

Experimental Results

12 tasks, 16 processors

The higher the better

Utilization

S
c

h
e

d
u

la
b

ili
ty

ra
ti
o



51Daniel Casini

Experimental Results

12 tasks, 16 processors

Utilization

Increasing task-set utilization

S
c

h
e

d
u

la
b

ili
ty

ra
ti
o



52Daniel Casini

Experimental Results

12 tasks, 16 processors

S
c

h
e

d
u

la
b

ili
ty

ra
ti
o

Improvement up to 100 percentage points

over [Serrano et al. 2017]

Utilization



53Daniel Casini

Experimental Results

10 tasks, 8 processors

S
c

h
e

d
u

la
b

ili
ty

ra
ti
o

Utilization

Our experimental study revelead a similar trend varying

the number of tasks and processor, e.g., 



54Daniel Casini

Conclusions

1 Methodology for analyzing non-preemptive
parallel tasks as a set of self-suspending tasks

2
Analysis for non-preemptive self-suspending tasks

which analytically dominates the only previous result

3
Partitioning algorithm to allocate nodes

to the available processors

4
Experimental study to assess the improvement in 

terms of schedulability – up to 100 p.p. w.r.t. the only
existing previous work for global scheduling



55Daniel Casini

Future Work

Deeper investigation of partitioning strategies

Improvement in the analysis precision

Integration of communication delays in the analysis

Memory Feasibility Analysis of Parallel Tasks 

Running on Scratchpad-Based 

Architectures

Daniel Casini, Alessandro Biondi, Geoffrey Nelissen and 
Giorgio Buttazzo

This morning @ RTSS



Thank you!
Daniel Casini

daniel.casini@sssup.it


