Partitioned Fixed-Priority
Scheduling of Parallel Tasks
Without Preemptions

Daniel Casini®, Alessandro Biondi”, Geoffrey Nelissen?,
and Giorgio Buttazzo”

* ReTiS Lab, Scuola Superiore Sant’Anna, Pisa, Italy
Y CISTER, ISEP, Polytechnic Institute of Porto, Portugal

> ./:
etis

Real-Time Systems Laboratory

Computing Systems

loned Fixed-Priority Scheduling of

Parallel Tasks)/Nithout Preemptions

Each node is characterized]

by a WCET ¢}

.

« Each task is represented by a Direct Acyclic Graph,
and is characterized by

I. aminimum inter-arrival fime T;

ii. aconstrained deadline D; < T;

ii. afixed priority m;

PartitionedFixed-Priority)cheduling of
Parallel Tasks Without Preemptions

Each node is choroc;’rerized
by a WCET ¢;

« Each task is represented by a Direct Acyclic Graph,
and is characterized by

I. aminimum inter-arrival fime T;

ii. aconstrained deadline D; < T;

ii. afixed priority m;

Partitioned Dixed-Priority Scheduling of

Paranel Tasks Without Preemptions

__

Parallel Tasks

« Each node is statically assigned to a core

« Nodes of the same task can be allocated to different cores

»
IIIIIIIIIIIIIIIIIIIIIIIII

As soon a node starts executing, it
cannot be preempted

Why non-preemptive scheduling?

Predictable management of local memoriesw

e.g., hodes can pre-load data from scratchpads
before start executing

N\

Memory Feasibility Analysis of Parallel Tasks
Running on Scratchpad-Based Architectures

Daniel Casini, Alessandro Biondi, Geoffrey Nelissen and Giorgio Buttazzo

This morning @ RTSS

Daniel Casini 6

Why non-preemptive scheduling?

Predictable management of local memoriesw

Reduces context-switch overhead | L | h,:lﬂjﬂ

Tzl
T T
0 6 9

Simplifies WCET Analysis |

Use of HW accelerators and GPUs

Can be a good choice for executing W
deep neural networks

Daniel Casini 7

Why non-preemptive scheduling?

« We profiled a deep neural network executed by Tensorflow @
8-core Intel i7 machine @ 3.5GHz

»m, A\&%
ll/ ‘ \' \V
/// W/ .“\ \4 .!\‘ AT N\
S »“'wr«/.w; 4,’%".\\.0' v :A
KL '0'/ w"i AAAAAA "'0‘ V“

B »:'\ /, m"“ v,:o'.' ';'I«, RN % 1""'
& ' OO '/""‘ i\“'
v“}\\ /‘l%“\\ ;:,' O ;ﬂa XX '/ ’

7/ 10\ §\\ ()
/'*\v'" T S N\ X
® C

\\\V/"‘ ‘\V//’

More than 34000 nodes where only about
1.2% of them have execution tfimes larger
than 100 microseconds

Daniel Casini 8

Overview of the analysis framework

Parallel Tasks

~ - ———————

__

-
*
-
<«
\
~

_____________________________________ Y
[Core 1 Core 2 Core 3 Core 4 ‘:
VO |
| o 0 B o @
- O O)
o NN \ AN, JS
s .
e [CF] —] = | =] |
n 2] : 1
e =] = H=E=N =] |
7 \d \d \d \d
Uniprocessor Uniprocessor Uniprocessor Uniprocessor
analysis for analysis for analysis for analysis for
SS tasks SS tasks SS tasks SS tasks
v \d v v
Response-time analysis for parallel tasks

\/

Schedulable? (yes/no)

Daniel Casini 9

Part Il

Part Il

Part |

Daniel Casini

Overview of the analysis framework

suspending

Self

Parallel Tasks

Tasks

~ - ———————

Node-to-core Mapping
_____________________________________ Y
[Core 1 Core 2 Core 3 Core 4 ‘:
[O O o O :
| @ o O
:\ [O O OO)
[N ZSRNRRNN. AU \ A A
l i
= —] = | =] |
= =1 E=N=H =] |

\d \d \d \d
Uniprocessor Uniprocessor Uniprocessor Uniprocessor
analysis for analysis for analysis for analysis for

SS tasks SS tasks SS tasks SS tasks
v v v v

Response-time analysis for parallel tasks

Schedulable? (yes/no)

Overview of the analysis framework

2 :
g -
= :
< :
T ! |
T ! |
a | t)
Part Il Node-to-core Mapping
_____________________________________ Y
[Core 1 Core 2 Core 3 Core 4 ‘:
VO |
| o 0 B o @
- O O)
o NN \ AN, JS
s .
e [CF] —] = | =] |
n 2] : 1
A == = H=N=0 =] !
Part 1=~ Tl /!
» \d \d \d \d
Uniprocessor Uniprocessor Uniprocessor Uniprocessor
analysis for analysis for analysis for analysis for
SS tasks SS tasks SS tasks SS tasks
Part | Response-time analysis for parallel tasks

Daniel Casini

Schedulable? (yes/no)

Part I:
Response-time analysis for
oarallel tasks

 Each core ‘perceives’ the execution of a parallel task as an
interleaved sequence of execution and suspension regions

executionregion
Q b2 {__f suspension region
I 7 Us iV
r 27
p2 vs i Ve
r 't=

Suspension regions correspond o
execution regions on a different core

Daniel Casini

« Paths can be mapped to a self-suspending tasks

executionregion

| . .
Lo suspensionregion

...

Daniel Casini

« Paths can be mapped to a self-suspending tasks

o @ @ @@@

Q P1 execution region

Q b2 D suspension region

Segmented
SS-tasks g g g g

The length of each execution region directly maps to
the WCET of a node in the graph

Daniel Casini

Segmented - - .
SS-tasks g g g

The length of each suspension region depends on the
response fime of nodes allocated to different cores

..

||||||||||||||||||||||

Daniel Casini

Solution (from Fonseca et al. 2017)

« Recursive algorithm to unfold response-time dependencies:

()P

sz

©P3

QIM

L P T ek P e

§551 = RSS2

T~

'
»

RSSl

§552 = RSS3

\ ;

N

-
»

S553 = RS54 \

N

RSSZ

RSS3

\

RSS4-

Daniel Casini

Parallel tasks without preemptions

« We extended this approach to work under non-preemptive
scheduling

4)
Need for a fine-grained analysis for

g non-preempftive self-suspending tasks)

e Our next contribution

Part ll:
Analysis for non-preemptive
self-suspending tasks

Overview of the analysis framework

Parallel Tasks

Self-suspending
Tasks

Daniel Casini

Uniprocessor
analysis for
SS tasks

Uniprocessor
analysis for
SS tasks

Uniprocessor
analysis for
SS tasks

Uniprocessor
analysis for
SS tasks

Response-time analysis for parallel tasks

Schedulable? (yes/no)

Overview of the analysis for SS-tasks

Two different approaches:

1 Holistic analysis

« Computes the RT of a whole self-suspending task

per-task response time bound

Ci = Z Cij S = Z Sij A \

all segments allsagments | [0l e

« Analytfically dominates state-of-the-art analysis (Dong et al. 2018)

) Segment-based analysis

« Computes the RT of individual segments
per-segment response time bounds

N b\

Daniel Casini

Overview of the analysis for SS-tasks

Two different approaches:

1 Holistic analysis

« Computes the RT of a whole self-suspending task

\.

:d moae .
\’\Vbﬂm of the TWO ~ e |
=ort analysis (Dong et al. 2018)

egment-based analysis

« Computes the RT of individual segments
per-segment response time bounds

Analysis for SS-tasks

Interference due o
higher-priority segments

l

Response-time analysis

|

Non-preemptive blocking due o
lower-priority segments

Computing Interference

« Interference from higher-priority tasks is accounted by
means of the following worst-case scenario®:

maximum possible release jitter

i T deadline = period

I I 1 I 1 1 I 1 1 1 1 1 1 I 1 I 1 1 I 1 I 1 Lkl

release

response time bound

 The response fime bound can be initially approximated to the
task’'s deadline and iteratively refined
» Holistic and segmented analyses are combined during ‘ \
the iterative refinement P 4

*Jian-Jia Chen et al., “Many suspensions, many problems: a review of self-suspending tasks
in real-time systems”, Real-time System Journal.

Daniel Casini 24

Fine-grained accounting of blocking

With a mulfiset approach

T Task release | Segment release

v

Two segmented
SS-tasks

———— [contending for

the same CPU

.

multiset

Contains the WCET of all
the lower-priority segments
that may block the task

under analysis in a
window of length A

Daniel Casini

Fine-grained accounting of blocking

» With a multiset GpprOGCh T Task release T Segment release
< A o]
_______ 3 N i Two segmented
THP T L L ul SS-tasks
SR N contending for
T1p T SR ; T S I the same CPU
- — .t=

Contains the WCET of all
the lower-priority segments
that may block the task
under analysis in a

indow of length A
& / win

multiset

Daniel Casini

Non-preemptive self-suspending tasks

\\
MISSION COMPLETE

Now we have our analysis!

Non-preemptive self-suspending tasks

\.\
MISSION COMPLETE

Now we have our analysis!

«Seo

Non-preemptive self-suspending tasks

~\'\
MLSSION COMPLETE

Now we have our analysis!

RI
}

R = max(R,R",R"")

maximum RT of all its paths

[The RT of a parallel fask can be derived from ’rhe}

Daniel Casini

Overview of the analysis framework

Self-suspending

Parallel Tasks

Tasks

'/ \:
Node-to-core Mapping
_____________________________________ Y
[Core 1 Core 2 Core 3 Core 4 ‘:
[O O o O :
| @ o O
:\ [O O OO)
[N ZSRNRRNN. AU \ A A
l i
= —] = | =] |
= =1 E=N=H =] |
\d \d \d \d
Uniprocessor Uniprocessor Uniprocessor Uniprocessor
analysis for analysis for analysis for analysis for
SS tasks SS tasks SS tasks SS tasks
v v v v

Response-time analysis for parallel tasks

Schedulable? (yes/no)

Daniel Casini

Overview of the analysis framework

Parallel Tasks

Self-suspending

——— -

-————— -

How to partition nodes to corese

Uniprocessor

Uniprocessor

Uniprocessor

Uniprocessor

analysis for analysis for analysis for analysis for
SS tasks SS tasks SS tasks SS tasks
v v v v

Response-time analysis for parallel tasks

\/

Schedulable? (yes/no)

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a fime, and perform schedulability analysis on a subgraph

INnputs: Qutput:
1. Strategy for ordering tasks 1. Node parfitioning

2. Strategy for ordering cores

Example:
Core 1l Core 2
Task under
analysis <:>
Core 3 Core 4

T?SKLTE?GF <::>
analysis rn
po%mon#g)g <:> <:> <:>

Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a fime, and perform schedulability analysis on a subgraph

INnputs: Qutput:
1. Strategy for ordering tasks 1. Node parfitioning

2. Strategy for ordering cores

Example:
Core 1l Core 2
Task under
analysis Q
Core 3 Core 4

Tolsk.undde.r Q Q
oy O O S

Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a fime, and perform schedulability analysis on a subgraph

INnputs: Qutput:
1. Strategy for ordering tasks 1. Node parfitioning

2. Strategy for ordering cores

Example:
Core 1l Core 2
Task under
analysis { J { Q QJ
Core 3 Core 4

Tolsk.undde.r Q Q
oy O O S

Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a fime, and perform schedulability analysis on a subgraph

INnputs: Qutput:
1. Strategy for ordering tasks 1. Node parfitioning

2. Strategy for ordering cores

Example:
Core 2

Run analysis for parallel tasks

e [P

Core 3 Core 4

Tolsk.undde.r Q Q
oy O O S

Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a fime, and perform schedulability analysis on a subgraph

INnputs: Qutput:
1. Strategy for ordering tasks 1. Node parfitioning

2. Strategy for ordering cores

Example:
Core 2

Run analysis for parallel tasks

Task under
analysis Q
! ;\g Voo {Q QJ
' Core 4
sk oncr ﬂ “ Schedulable!] { QJ

analysis (during

partitioning) L Q QJ

Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a fime, and perform schedulability analysis on a subgraph

INnputs: Qutput:
1. Strategy for ordering tasks 1. Node parfitioning

2. Strategy for ordering cores

Example:
Core 1l Core 2
Task under
analysis { J { <:> <:>J
Core 3 Core 4

Jokunder | o o {Q @J { QJ

partitioning)

Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a fime, and perform schedulability analysis on a subgraph

INnputs: Qutput:
1. Strategy for ordering tasks 1. Node parfitioning

2. Strategy for ordering cores

Example:
Core 1l Core 2
Task under
analysis { J { <:> <:>J
Core 3 Core 4

Jokunder | o o {Q @J {@ QJ

partitioning)

Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a fime, and perform schedulability analysis on a subgraph

INnputs: Qutput:
1. Strategy for ordering tasks 1. Node parfitioning

2. Strategy for ordering cores

Example:

Run analysis for parallel tasks

e [P

Core 3 Core 4

Jokunder | o o {Q @J {@ QJ

partitioning)

Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a fime, and perform schedulability analysis on a subgraph

INnputs: Qutput:
1. Strategy for ordering tasks 1. Node parfitioning

2. Strategy for ordering cores

Example:

Run analysis for parallel tasks

Task under
analysis Q
i& l O {Q QJ
—L x Unschedulable!] iy
Task under { Q J

lysis (duri
e | O O

Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a fime, and perform schedulability analysis on a subgraph

INnputs: Qutput:
1. Strategy for ordering tasks 1. Node parfitioning

2. Strategy for ordering cores

Example:
Core 1l Core 2
Task under
analysis { J { Q QJ
Core 3 Core 4

Task under Q Q
lysis (duri
et lduting | {Q QJ { O J

Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a fime, and perform schedulability analysis on a subgraph

Qutput:
1. Strategy for ordering tasks 1.

Inputs:
Node partitioning

2. Strategy for ordering cores

Example:
Run analysis for parallel tasks e’
Task under
analysis Q Q
=7 L J o
Core 3 Core 4
Task under Q Q
analysis (during Q——*@
partitioning) { Q Q} { Q J

Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a fime, and perform schedulability analysis on a subgraph

INnputs: Qutput:
1. Strategy for ordering tasks 1. Node parfitioning

2. Strategy for ordering cores

Example:
Core 2

Run analysis for parallel tasks

Task under
analysis Q
! ;\g Voo {Q QJ
' Core 4
sk oncr ﬂ “ Schedulable!] { QJ

analysis (during

partitioning) L Q QJ

Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a fime, and perform schedulability analysis on a subgraph

INnputs: Qutput:
1. Strategy for ordering tasks 1. Node parfitioning

2. Strategy for ordering cores

Example:
Core 1l Core 2
Task under
analysis O @, @
@ (D
Core 3 Core 4

Task under Q Q
lysis (during | —— —(
parifioning] {@ QJ { J

Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a fime, and perform schedulability analysis on a subgraph

INnputs: Qutput:
1. Strategy for ordering tasks 1. Node parfitioning

2. Strategy for ordering cores

Example:
Core 1l Core 2
Task under
analysis O O @, @
@ (D
Core 3 Core 4

Task und
JToskunder | { = J { @J

partitioning)

Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a fime, and perform schedulability analysis on a subgraph

INnputs: Qutput:
1. Strategy for ordering tasks 1. Node parfitioning

2. Strategy for ordering cores

Example:
Core 1l Core 2
Task under
analysis O O @, @
@ (D
Core 3 Core 4

Task und
Joskunder { O J {@@J

partitioning)

Daniel Casini

Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a fime, and perform schedulability analysis on a subgraph

INnputs: Qutput:
1. Strategy for ordering tasks 1. Node parfitioning

2. Strategy for ordering cores

Example:

Task under
analysis

Task under
analysis (during
partitioning)

Daniel Casini

Experimental Results

Experimental Study

« Experimental study based on synthetic workload

« We compared against the only previous work targeting
non-preemptive scheduling of parallel fasks, which targets
global scheduling (Serrano et al. 2017)

« Same DAG generator used in [Serrano et al. 2017]

« WCETs randomly generated in (0,100] with
uniform distribution

« Tasks utilizations obtained with U-Unifast

» Tasks periods computed as T; = U; Ynodes Cij

Daniel Casini

Experimental Results

12 tasks, 16 processors

\ | \ |
P Py Py Py o —]
1™ o L= o

Schedulability ratio
()
o

1 1.5 2 25 3 35 4 45 5 55 6 65 7 75

Utilization

The higher the better

GLOBAL —4— WF_UTIL —@— FF_ALGO —&— BF_ALGO —j¢— WF_ALGO —a— PARTITIONED

Daniel Casini

Experimental Results

12 tasks, 16 processors

|
o

\ | \ |
o o o o -
1™ o L= o

ONoo o)

o—=© e—=© o
1 1.5 2 25 3 35 4 45 5 55 6 65 7 75

Schedulability ratio
()
o

Utilization

)

Increasing task-set utilization

GLOBAL —4— WF_UTIL —@— FF_ALGO —&— BF_ALGO —j¢— WF_ALGO —a— PARTITIONED

Daniel Casini

Experimental Results

12 tasks, 16 processors

\
o
L=

—

I 1.5 2 23 35 4 45 5 55 6 65 7 7.5

Schedulability ratio
()
o

Utilization

Improvement up to 100 percentage points
over [Serrano et al. 2017]

GLOBAL —4— WF_UTIL —@— FF_ALGO —&— BF_ALGO —j¢— WF_ALGO —a— PARTITIONED

Experimental Results

Our experimental study revelead a similar tfrend varying
the number of tasks and processor, e.g.,

10 tasks, 8 processors

I
Py
fu

—
i
D

)
O

[SE—Y
[S—
n

0 o—0—0
25 3 35 4 45 5 55
Utilization

Schedulability ratio
O
an

— GLOBAL —+— WF_UTIL —@— FF_ALGO —&— BF_ALGO —se— WF_ALGO —&— PARTITIONED

Daniel Casini

Conclusions

Methodology for analyzing non-preemptive
parallel tasks as a set of self-suspending tasks

Analysis for non-preemptive self-suspending tasks
which analyfically dominates the only previous result

Partitioning algorithm to allocate nodes
to the available processors

Experimental study to assess the improvement in
terms of schedulability — up to 100 p.p. w.r.t. the only
existing previous work for global scheduling

(U
(2
(2
(4

Deeper investigation of partitioning strategies

Improvement in the analysis precision

Integration of communication delays in the analysis

Schedulability
Analysis

Memory Feasibility

"

=S

Parallel tasks modelling

¥
Partitioning Algorithm

Task node mapping

Memory mapping

Memory Feasibility Analysis of Parallel Tasks\

Running on Scratchpad-Based
Architectures

Daniel Casini, Alessandro Biondi, Geoffrey Nelissen and

Giorgio Buttazzo

This morning @ RTSS

Core 1 Core 2
@)
50 |
M1 LM 2 I—
=_
I Cr

Daniel Casini

Thank you!

Daniel Casini
daniel.casini@sssup.it

