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Each node is characterized ]

by a WCET ¢}

.

« Each task is represented by a Direct Acyclic Graph,
and is characterized by

I.  aminimum inter-arrival fime T;

ii. aconstrained deadline D; < T;

ii. afixed priority m;
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Partitioned Dixed-Priority Scheduling of
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Parallel Tasks

___________________________________________________________________________

« Each node is statically assigned to a core

« Nodes of the same task can be allocated to different cores
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As soon a node starts executing, it
cannot be preempted




Why non-preemptive scheduling?

Predictable management of local memoriesw

e.g., hodes can pre-load data from scratchpads
before start executing

N\

Memory Feasibility Analysis of Parallel Tasks
Running on Scratchpad-Based Architectures
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Why non-preemptive scheduling?

Predictable management of local memoriesw

Reduces context-switch overhead | L | h,:lﬂjﬂ

Tzl
T T
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Simplifies WCET Analysis |

Use of HW accelerators and GPUs

Can be a good choice for executing W
deep neural networks
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Why non-preemptive scheduling?

« We profiled a deep neural network executed by Tensorflow @
8-core Intel i7 machine @ 3.5GHz
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More than 34000 nodes where only about
1.2% of them have execution tfimes larger
than 100 microseconds
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Overview of the analysis framework

Parallel Tasks
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Schedulable? (yes/no)
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Overview of the analysis framework
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Overview of the analysis framework
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Part I:
Response-time analysis for
oarallel tasks




 Each core ‘perceives’ the execution of a parallel task as an
interleaved sequence of execution and suspension regions

executionregion
Q b2 {__f suspension region
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Suspension regions correspond o
execution regions on a different core
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« Paths can be mapped to a self-suspending tasks

executionregion

| . .
Lo suspensionregion

.............................................
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« Paths can be mapped to a self-suspending tasks

o @ @ @@@

Q P1 execution region

Q b2 D suspension region

Segmented
SS-tasks g g g g

The length of each execution region directly maps to
the WCET of a node in the graph
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Segmented - - .
SS-tasks g g g

The length of each suspension region depends on the
response fime of nodes allocated to different cores
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Solution (from Fonseca et al. 2017)

« Recursive algorithm to unfold response-time dependencies:
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Parallel tasks without preemptions

« We extended this approach to work under non-preemptive
scheduling

4 )
Need for a fine-grained analysis for

g non-preempftive self-suspending tasks )

e Our next contribution




Part ll:
Analysis for non-preemptive
self-suspending tasks




Overview of the analysis framework

Parallel Tasks

Self-suspending
Tasks
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Uniprocessor
analysis for
SS tasks

Uniprocessor
analysis for
SS tasks

Uniprocessor
analysis for
SS tasks

Uniprocessor
analysis for
SS tasks

Response-time analysis for parallel tasks

Schedulable? (yes/no)




Overview of the analysis for SS-tasks

Two different approaches:

1 Holistic analysis

« Computes the RT of a whole self-suspending task

per-task response time bound

Ci = Z Cij S = Z Sij A \

all segments allsagments | [0l e

« Analytfically dominates state-of-the-art analysis (Dong et al. 2018)

) Segment-based analysis

« Computes the RT of individual segments
per-segment response time bounds

N b\
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Overview of the analysis for SS-tasks

Two different approaches:

1 Holistic analysis

« Computes the RT of a whole self-suspending task

\.
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=ort analysis (Dong et al. 2018)

egment-based analysis

« Computes the RT of individual segments
per-segment response time bounds




Analysis for SS-tasks

Interference due o
higher-priority segments

l

Response-time analysis

|

Non-preemptive blocking due o
lower-priority segments




Computing Interference

« Interference from higher-priority tasks is accounted by
means of the following worst-case scenario®:

maximum possible release jitter

i T deadline = period

I I 1 I 1 1 I 1 1 1 1 1 1 I 1 I 1 1 I 1 I 1 Lkl

release

response time bound

 The response fime bound can be initially approximated to the
task’'s deadline and iteratively refined
» Holistic and segmented analyses are combined during ‘ \
the iterative refinement P 4

*Jian-Jia Chen et al., “Many suspensions, many problems: a review of self-suspending tasks
in real-time systems”, Real-time System Journal.
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Fine-grained accounting of blocking

With a mulfiset approach

T Task release | Segment release

v

Two segmented
SS-tasks

_____________

———— [ contending for

the same CPU

.

multiset

Contains the WCET of all
the lower-priority segments
that may block the task

under analysis in a
window of length A
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Fine-grained accounting of blocking

» With a multiset GpprOGCh T Task release T Segment release
< A o ]
_______ 3 N i Two segmented
THP T L L ul SS-tasks
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Contains the WCET of all
the lower-priority segments
that may block the task
under analysis in a

indow of length A
& / win

multiset
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Non-preemptive self-suspending tasks

\\
MISSION COMPLETE

Now we have our analysis!
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Non-preemptive self-suspending tasks

~\'\
MLSSION COMPLETE

Now we have our analysis!

RI
}

R = max(R,R",R"")

maximum RT of all its paths

[The RT of a parallel fask can be derived from ’rhe}
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Overview of the analysis framework
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Overview of the analysis framework

Parallel Tasks

Self-suspending

_______
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How to partition nodes to corese

Uniprocessor

Uniprocessor
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Uniprocessor
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Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a fime, and perform schedulability analysis on a subgraph

INnputs: Qutput:
1. Strategy for ordering tasks 1. Node parfitioning

2. Strategy for ordering cores

Example:
Core 1l Core 2
Task under
analysis <:>
Core 3 Core 4

T?SKLTE?GF <::>
analysis rn
po%mon#g)g <:> <:> <:>
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Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
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Partitioning (meta-)algorithm

IDEA: Analyzing schedulability incrementally, adding one node at
a fime, and perform schedulability analysis on a subgraph

INnputs: Qutput:
1. Strategy for ordering tasks 1. Node parfitioning

2. Strategy for ordering cores

Example:

Task under
analysis

Task under
analysis (during
partitioning)
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Experimental Results




Experimental Study

« Experimental study based on synthetic workload

« We compared against the only previous work targeting
non-preemptive scheduling of parallel fasks, which targets
global scheduling (Serrano et al. 2017)

« Same DAG generator used in [Serrano et al. 2017]

« WCETs randomly generated in (0,100] with
uniform distribution

« Tasks utilizations obtained with U-Unifast

» Tasks periods computed as T; = U; Ynodes Cij
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Experimental Results

12 tasks, 16 processors
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Experimental Results

12 tasks, 16 processors

|
o

\ | \ |
o o o o -
1™ o L= o

ONoo o)

o—=© e—=© o
1 1.5 2 25 3 35 4 45 5 55 6 65 7 75

Schedulability ratio
()
o

Utilization

)

Increasing task-set utilization

GLOBAL —4— WF_UTIL —@— FF_ALGO —&— BF_ALGO —j¢— WF_ALGO —a— PARTITIONED

Daniel Casini



Experimental Results

12 tasks, 16 processors
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Improvement up to 100 percentage points
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Experimental Results

Our experimental study revelead a similar tfrend varying
the number of tasks and processor, e.g.,

10 tasks, 8 processors
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Conclusions

Methodology for analyzing non-preemptive
parallel tasks as a set of self-suspending tasks

Analysis for non-preemptive self-suspending tasks
which analyfically dominates the only previous result

Partitioning algorithm to allocate nodes
to the available processors

Experimental study to assess the improvement in
terms of schedulability — up to 100 p.p. w.r.t. the only
existing previous work for global scheduling
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Deeper investigation of partitioning strategies

Improvement in the analysis precision

Integration of communication delays in the analysis

Schedulability
Analysis

Memory Feasibility

"

=S

Parallel tasks modelling

¥
Partitioning Algorithm

Task node mapping

Memory mapping

Memory Feasibility Analysis of Parallel Tasks\

Running on Scratchpad-Based
Architectures
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Thank you!
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