Partitioned Fixed-Priority Scheduling of Parallel Tasks Without Preemptions

Daniel Casini*, Alessandro Biondi^{*}, Geoffrey Nelissen[†], and Giorgio Buttazzo^{*}

* ReTiS Lab, Scuola Superiore Sant'Anna, Pisa, Italy

⁺ CISTER, ISEP, Polytechnic Institute of Porto, Portugal

Overview

Partitioned Fixed-Priority Scheduling of Parallel Tasks Without Preemptions

- Each task is represented by a Direct Acyclic Graph, and is characterized by
 - i. a minimum inter-arrival time T_i
 - ii. a constrained deadline $D_i \leq T_i$
 - iii. a fixed priority π_i

Overview

Partitioned Fixed-Priority Scheduling of Parallel Tasks Without Preemptions

- Each task is represented by a Direct Acyclic Gr and is characterized by
 - i. a minimum inter-arrival time T_i
 - ii. a constrained deadline $D_i \leq T_i$
 - iii. a fixed priority π_i

Each node is characterized

by a WCET C_i^i

Partitioned Pixed-Priority Scheduling of Parallel Tasks Without Preemptions

- Each node is statically assigned to a core
- Nodes of the same task can be allocated to different cores

Overview

Partitioned Fixed-Priority Scheduling of Parallel Tasks Without Preemptions

As soon a **node** starts executing, it cannot be preempted

Why non-preemptive scheduling?

Predictable management of local memories

e.g., nodes can pre-load data from scratchpads before start executing

Memory Feasibility Analysis of Parallel Tasks Running on Scratchpad-Based Architectures

Daniel Casini, Alessandro Biondi, Geoffrey Nelissen and Giorgio Buttazzo

This morning @ **RTSS**

Why non-preemptive scheduling?

Predictable management of local memories

Reduces context-switch overhead

Simplifies WCET Analysis

Use of HW accelerators and GPUs

Can be a good choice for executing deep neural networks

Why non-preemptive scheduling?

 We profiled a deep neural network executed by Tensorflow a 8-core Intel i7 machine @ 3.5GHz

More than 34000 nodes where only about 1.2% of them have execution times larger than 100 microseconds

Part I: Response-time analysis for parallel tasks

• Each core 'perceives' the execution of a parallel task as an interleaved sequence of execution and suspension regions

Suspension regions correspond to execution regions on a different core

• Paths can be mapped to a self-suspending tasks

• Paths can be mapped to a self-suspending tasks

The length of each execution region directly maps to the WCET of a node in the graph

Solution (from Fonseca et al. 2017)

• Recursive algorithm to unfold response-time dependencies:

Parallel tasks without preemptions

• We extended this approach to work under non-preemptive scheduling

Need for a fine-grained analysis for non-preemptive self-suspending tasks

Part II: Analysis for non-preemptive self-suspending tasks

Overview of the analysis for SS-tasks

Two different approaches:

Holistic analysis

• Computes the RT of a whole self-suspending task

• Analytically dominates state-of-the-art analysis (Dong et al. 2018)

Segment-based analysis

• Computes the RT of individual segments

per-segment response time bounds

2

Overview of the analysis for SS-tasks

Two different approaches:

• Computes the RT of individual segments

per-segment response time bounds

Analysis for SS-tasks

Computing Interference

 Interference from higher-priority tasks is accounted by means of the following worst-case scenario*:

- The response time bound can be initially approximated to the task's deadline and iteratively refined
 - Holistic and segmented analyses are combined during the iterative refinement

*Jian-Jia Chen et al., "Many suspensions, many problems: a review of self-suspending tasks in real-time systems", Real-time System Journal.

Fine-grained accounting of blocking

Contains the WCET of all the lower-priority segments that may block the task under analysis in a window of length Δ

Fine-grained accounting of blocking

Contains the WCET of all the lower-priority segments that may block the task under analysis in a window of length Δ

multiset

Non-preemptive self-suspending tasks

Now we have our analysis!

Non-preemptive self-suspending tasks

Now we have our analysis!

Non-preemptive self-suspending tasks

Now we have our analysis!

The RT of a parallel task can be derived from the maximum RT of all its paths

IDEA: Analyzing schedulability incrementally, adding one node at a time, and perform schedulability analysis on a subgraph

Inputs:

Strategy for ordering tasks 1.

Node partitioning 1.

Output:

Strategy for ordering cores 2.

Example:

Task under analysis

Task under analysis (during partitioning)

Core 3

Core 2

Core 4

IDEA: Analyzing schedulability incrementally, adding one node at a time, and perform schedulability analysis on a subgraph

Inputs:

- Strategy for ordering tasks 1.
- Output: Node partitioning 1.
- Strategy for ordering cores 2.

Example:

Task under analysis

Core 3

Core 2

Core 4

Task under analysis (during partitioning)

IDEA: Analyzing schedulability incrementally, adding one node at a time, and perform schedulability analysis on a subgraph

Inputs:

- Strategy for ordering tasks 1.
- Output: Node partitioning 1.
- Strategy for ordering cores 2.

Example:

Task under analysis

Task under

partitioning)

Core 3

Core 2

Core 4

IDEA: Analyzing schedulability incrementally, adding one node at a time, and perform schedulability analysis on a subgraph

Inputs:

1. Strategy for ordering tasks

- Output:
 - 1. Node partitioning

2. Strategy for ordering cores

IDEA: Analyzing schedulability incrementally, adding one node at a time, and perform schedulability analysis on a subgraph

Inputs:

1. Strategy for ordering tasks

- Output:
 - 1. Node partitioning

2. Strategy for ordering cores

IDEA: Analyzing schedulability incrementally, adding one node at a time, and perform schedulability analysis on a subgraph

Inputs:

- 1. Strategy for ordering tasks
- Output: 1. Node partitioning

2. Strategy for ordering cores

IDEA: Analyzing schedulability incrementally, adding one node at a time, and perform schedulability analysis on a subgraph

Inputs:

- 1. Strategy for ordering tasks
- Output: 1. Node partitioning

2. Strategy for ordering cores

IDEA: Analyzing schedulability incrementally, adding one node at a time, and perform schedulability analysis on a subgraph

Inputs:

1. Strategy for ordering tasks

1. Node partitioning

Output:

IDEA: Analyzing schedulability incrementally, adding one node at a time, and perform schedulability analysis on a subgraph

Inputs:

1. Strategy for ordering tasks

- Output:
 - 1. Node partitioning

IDEA: Analyzing schedulability incrementally, adding one node at a time, and perform schedulability analysis on a subgraph

Inputs:

- 1. Strategy for ordering tasks
- Output: 1. Node partitioning

2. Strategy for ordering cores

IDEA: Analyzing schedulability incrementally, adding one node at a time, and perform schedulability analysis on a subgraph

Inputs:

1. Strategy for ordering tasks

1. Node partitioning

Output:

IDEA: Analyzing schedulability incrementally, adding one node at a time, and perform schedulability analysis on a subgraph

Inputs:

1. Strategy for ordering tasks

1. Node partitioning

Output:

IDEA: Analyzing schedulability incrementally, adding one node at a time, and perform schedulability analysis on a subgraph

Inputs:

- 1. Strategy for ordering tasks
- Output: 1. Node partitioning

2. Strategy for ordering cores

IDEA: Analyzing schedulability incrementally, adding one node at a time, and perform schedulability analysis on a subgraph

Inputs:

- Strategy for ordering tasks
- Output:
 - 1. Node partitioning

2. Strategy for ordering cores

Example:

1.

IDEA: Analyzing schedulability incrementally, adding one node at a time, and perform schedulability analysis on a subgraph

Inputs:

- 1. Strategy for ordering tasks
- Output:
 - 1. Node partitioning

2. Strategy for ordering cores

IDEA: Analyzing schedulability incrementally, adding one node at a time, and perform schedulability analysis on a subgraph

Inputs:

1.

- Strategy for ordering tasks
- Output:
 - 1. Node partitioning

Experimental Study

- Experimental study based on synthetic workload
 - We compared against the only previous work targeting non-preemptive scheduling of parallel tasks, which targets global scheduling (Serrano et al. 2017)
 - Same DAG generator used in [Serrano et al. 2017]

- WCETs randomly generated in (0,100] with uniform distribution
- Tasks utilizations obtained with U-Unifast
- Tasks periods computed as $T_i = U_i \sum_{nodes} C_{i,j}$

The higher the better

—— GLOBAL —∔— WF_UTIL —●— FF_ALGO —▲— BF_ALGO —★— WF_ALGO _☆— PARTITIONED

—— GLOBAL —∔— WF_UTIL —⊕— FF_ALGO —▲— BF_ALGO —★— WF_ALGO —☆— PARTITIONED

Our experimental study revelead a similar trend varying the number of tasks and processor, e.g.,

10 tasks, 8 processors

Conclusions

Methodology for analyzing non-preemptive parallel tasks as a set of self-suspending tasks

Analysis for non-preemptive self-suspending tasks which analytically dominates the only previous result

Partitioning algorithm to allocate nodes to the available processors

Experimental study to assess the improvement in terms of schedulability – **up to 100 p.p.** w.r.t. the only existing previous work for global scheduling

Future Work

Deeper investigation of partitioning strategies

Improvement in the analysis precision

Integration of **communication delays** in the analysis

Memory Feasibility Analysis of Parallel Tasks Running on Scratchpad-Based Architectures

Daniel Casini, Alessandro Biondi, Geoffrey Nelissen and Giorgio Buttazzo

This morning @ **RTSS**

Thank you!

Daniel Casini daniel.casini@sssup.it