An Improved Speedup Factor for Sporadic Tasks with Constrained Deadlines under EDF

Xin Han¹, Liang Zhao¹, Zhishan Guo², Xingwu Liu³

1 School of Software Tech, Dalian University of Technology
2 Department of ECE, University of Central Florida
3 Institute of Computing Technology, CAS
Outline

• Problem statement
• Main result
• Sketchy proof
• Open problems
Periodic tasks and sporadic tasks

- A task: a sequence of jobs with execution time e and deadline d

• Periodic tasks: fixed interarrival time p
Periodic tasks and sporadic tasks

- A task: a sequence of jobs with execution time e and deadline d

- Periodic tasks: fixed interarrival time p
- Sporadic tasks: varying interarrival time $\geq p$

$\tau = (e, d, p)$
Schedulability testing of $\tau = \{\tau_1, \ldots, \tau_n\}$

- On a unit-speed uniprocessor
 - Resource demand:

![Diagram of resource demand](image)
Schedulability testing of $\tau = \{\tau_1, \ldots, \tau_n\}$

- On a unit-speed uniprocessor
 - Resource demand:
 $$dbf(\tau, t) = \sum_{\tau_i \in \tau} dbf(\tau_i, t)$$
 - Schedulable $\iff dbf(\tau, t) \leq t$
 - Co-NP-hard to check

Schedulability testing of $\tau = \{\tau_1, \ldots, \tau_n\}$

- On a unit-speed uniprocessor
 - Resource demand:
 \[dbf(\tau, t) = \sum_{\tau_i \in \tau} dbf(\tau_i, t) \]
 - Approximation:
 \[dbf^*(\tau_i, \cdot) dbf^*(\tau_j, \cdot) \]

Schedulability testing of $\tau = \{\tau_1, \ldots, \tau_n\}$

- On a unit-speed uniprocessor
 - Resource demand:
 $$dbf(\tau, t) = \sum_{\tau_i \in \tau} dbf(\tau_i, t)$$
 - Approximation:
 $$dbf^*(\tau, t) = \sum_{\tau_i \in \tau} dbf^*(\tau_i, t)$$

Schedulability testing of $\tau = \{\tau_1, \ldots, \tau_n\}$

- On a speed-1 multiprocessor
 - Partitioned scheduling (Any fit with dbf* works)
 - Speedup bound is $1 + \rho$ [a]

$$\rho = \sup_{\tau : dbf(\tau, t) \leq t} \frac{dbf^*(\tau, d)}{d}, d = \max\{d_1, \ldots, d_n\}$$

Schedulability testing of $\tau = \{\tau_1, \ldots, \tau_n\}$

- On a speed-1 multiprocessor
 - Partitioned scheduling (Any fit with dbf* works)
 - Speedup bound is $1 + \rho$ [a]
 \[
 \rho = \sup_{\tau: dbf(\tau,t) \leq t} \frac{dbf^*(\tau, d)}{d}, \quad d = \max\{d_1, \ldots, d_n\}
 \]

A schedulability test has **speedup factor** [b] s, $s \geq 1$, if any task set that is schedulable by any algorithm on platform with processors of speed 1, it will be deemed schedulable by this test upon a platform with processors that are s times as fast.

- **Speedup bound** = lower bound of speedup factor
- Major metric & standard tool for evaluating sub-optimality

Ultimate objective

- Figure out ρ
- Known results
 (Constrained-deadline)
Main result

• Better upper bound of ρ
 • Lower speedup factor of partitioned scheduling
Outline

• Problem statement
• Main result
• Sketchy proof
• Open problems
Main ideas to estimate ρ

- Principle: Keep τ feasible while not decreasing $\text{Dbf}^*(\tau,d_n)$

- Details: Fix many parameters
 - Identical execution times: $e_i = 1$
 - Tight deadlines: $d_i = d_{i-1} + e_i = i$
 - Confined periods: $n < p_i + d_i \leq 2n$

- Reduce the problem to an “easy” math programming

- Lossless
- Lossy
Step 0: Normalization

• Original objective

\[
\begin{align*}
\sup_{\text{subject to}} & \quad dbf^*(\tau, d_n) \frac{d_n}{d_n} , \\
& \quad dbf(\tau, t) \leq t, \quad \forall t > 0 \\
& \quad d_1 \leq d_2 \leq \cdots \leq d_n , \\
& \quad n \in \mathbb{Z}^+, e_i, d_i, p_i \in \mathbb{R}^+, \quad 1 \leq i \leq n.
\end{align*}
\]

• \(MP_0 \)

\[
\begin{align*}
\sup_{\text{subject to}} & \quad dbf^*(\tau, d_n) \frac{d_n}{d_n} , \\
& \quad dbf(\tau, t) \leq t, \quad \forall t > 0 \\
& \quad d_i + p_i > d_n , \quad 1 \leq i \leq n-1, \\
& \quad d_1 \leq d_2 \leq \cdots \leq d_n , \\
& \quad n \in \mathbb{Z}^+, e_i, d_i, p_i \in \mathbb{R}^+, \quad 1 \leq i \leq n.
\end{align*}
\]

Let $\tau = \{\tau_1, \ldots, \tau_n\}$ be a feasible solution to the original problem. Suppose $d_i + p_i \leq d_n$. Transform τ_i into τ'_i

$$d_i \geq d_n$$

Transform τ_i into τ'_i

$$\tau' = \{\tau'_1, \ldots, \tau'_n\}$$

is a feasible solution to MP_1

$$dbf(\tau, t) \geq dbf(\tau', t) \Rightarrow \tau' = \{\tau'_1, \ldots, \tau'_n\}$$

$$dbf^*(\tau, d_n) = dbf^*(\tau', d'_n) \Rightarrow \text{equal objective values}$$

Step 1: Rationalization

\[
\begin{align*}
\textbf{MP}_0 & \quad \sup \frac{\text{dbf}^*(\tau, d_n)}{d_n}, \\
\text{subject to} & \quad \text{dbf}(\tau, t) \leq t, \quad \forall \ t > 0 \\
& \quad d_i + p_i > d_n, \quad 1 \leq i \leq n - 1, \\
& \quad d_1 \leq d_2 \leq \cdots \leq d_n, \\
& \quad n \in \mathbb{Z}^+, e_i, d_i, p_i \in \mathbb{R}^+, \quad 1 \leq i \leq n.
\end{align*}
\]

\[
\begin{align*}
\textbf{MP}_1 & \quad \sup \frac{\text{dbf}^*(\tau, d_n)}{d_n}, \\
\text{subject to} & \quad \text{dbf}(\tau, t) \leq t, \quad \forall \ t > 0 \\
& \quad d_i + p_i > d_n, \quad 1 \leq i \leq n - 1, \\
& \quad d_1 \leq d_2 \leq \cdots \leq d_n, \\
& \quad n \in \mathbb{Z}^+, e_i, d_i, p_i \in \mathbb{Q}^+, \quad 1 \leq i \leq n.
\end{align*}
\]

Lossless due to continuity
Step 2: Tight deadlines

- MP_1

\[
\begin{align*}
\sup & \quad \frac{dbf^* (\tau, d_n)}{d_n}, \\
\text{subject to} & \quad dbf(\tau, t) \leq t, \quad \forall t > 0 \\
& \quad d_i + p_i > d_n, \quad 1 \leq i \leq n - 1, \\
& \quad d_1 \leq d_2 \leq \cdots \leq d_n, \\
& \quad n \in \mathbb{Z}^+, e_i, d_i, p_i \in \mathbb{Q}^+, \quad 1 \leq i \leq n.
\end{align*}
\]

- MP_2

\[
\begin{align*}
\sup & \quad \frac{dbf^* (\tau, d_n)}{d_n}, \\
\text{subject to} & \quad dbf(\tau, t) \leq t, \quad \forall t > 0 \\
& \quad d_i + p_i > d_n, \quad 1 \leq i \leq n - 1, \\
& \quad d_i = e_i + d_{i-1}, \quad 1 \leq i \leq n, \\
& \quad n \in \mathbb{Z}^+, e_i, d_i, p_i \in \mathbb{Q}^+, \quad 1 \leq i \leq n.
\end{align*}
\]
Step 3: Identical execution times

\[MP_2 \]
\[
\begin{align*}
\mathop{\sup}_{d_n} \frac{\text{dbf}^*(\tau, d_n)}{d_n}, \\
\text{subject to} \quad \text{dbf}(\tau, t) \leq t, \quad \forall t > 0 \\
\quad d_i + p_i > d_n, \quad 1 \leq i \leq n - 1, \\
\quad d_i = e_i + d_{i-1}, \quad 1 \leq i \leq n, \\
\quad n \in \mathbb{Z}^+, e_i, d_i, p_i \in \mathbb{Q}^+, \quad 1 \leq i \leq n.
\end{align*}
\]

\[MP_3 \]
\[
\begin{align*}
\mathop{\sup}_{d_n} \frac{\text{dbf}^*(\tau, d_n)}{d_n}, \\
\text{subject to} \quad \text{dbf}(\tau, t) \leq t, \quad \forall t > 0 \\
\quad d_i + p_i > d_n, \quad 1 \leq i \leq n - 1, \\
\quad d_i = e_i + d_{i-1}, \quad 1 \leq i \leq n, \\
\quad e_i = 1, \quad 1 \leq i \leq n \\
\quad n \in \mathbb{Z}^+, e_i, d_i, p_i \in \mathbb{Q}^+, \quad 1 \leq i \leq n.
\end{align*}
\]

- Proportionally scaling all the parameters keeps the feasibility and objective value.
- The original parameters are rational.
Decompose each task τ_i into task set $\{\tau_1^i, ..., \tau_k^i\}$
Decomposed task set is feasible to MP_2 by construction
\[dbf^*(\tau_i, d_n) \leq \sum_{j=1}^{k} dbf^*(\tau_j^i, d_n) \]
\[dbf^*(\tau_i, d_n) \leq \sum_{j=1}^{k} dbf^*(\tau_j^i, d_n) \]
Step 4: Confined range of periods

\[M_{P3} \]

\[
\text{sup} \frac{dbf^*(\tau, d_n)}{d_n}, \quad \text{subject to}
\]
\[dbf(\tau, t) \leq t, \quad \forall t > 0 \\
d_i + p_i > d_n, \quad 1 \leq i \leq n - 1, \\
d_i = e_i + d_{i-1}, \quad 1 \leq i \leq n, \\
e_i = 1, \quad 1 \leq i \leq n \\
n \in \mathbb{Z}^+, e_i, d_i, p_i \in \mathbb{Q}^+, \quad 1 \leq i \leq n.
\]

\[M_{P4} \]

\[
\text{sup} \frac{dbf^*(\tau, d_n)}{d_n}, \quad \text{subject to}
\]
\[n < d_i + p_i \leq 2n \text{ are distinct} \\
d_i = e_i + d_{i-1}, \quad 1 \leq i \leq n, \\
e_i = 1, \quad 1 \leq i \leq n \\
n \in \mathbb{Z}^+, e_i, d_i, p_i \in \mathbb{Q}^+, \quad 1 \leq i \leq n.
\]
Basic idea

• Let \(\tau = \{\tau_1, ..., \tau_n\} \) be a feasible solution to \(MP_3 \)

• For any task \(\tau_i = (e_i, d_i, p_i) \), suppose \(d_i + p_i \) is the \(j \)th smallest.
 • \(d_i + p_i \geq n + j \) since \(d_i + p_i \geq dbf(\tau, d_i + p_i) \geq n + j \)

• Transform \(\tau_i \) to \(\tau'_i = (e_i, d_i, p'_i) \) such that \(d_i + p'_i = n + j \)

• \(\tau' = \{\tau'_1, ..., \tau'_n\} \) is a feasible solution to \(MP_4 \)
\[df^*(\tau_i, d_n) \leq df^*(\tau'_i, d_n) \]

- \(\rho \) is upper bounded by the optimum value \(\rho' \) of \(MP_4 \)
- \(\rho' \leq \sup_{p_1 + \cdots + p_n = n^2} \left(2 - \frac{\sum_{i=1}^{n} i}{n} \right) \) \implies \(\rho' \leq \frac{14}{9} \)
- \(\sum_{i=1}^{n} x_i = n^2 \implies \sum_{i=1}^{n} \frac{i}{x_i} \geq \frac{4n}{9} \) \implies \(\rho \leq \frac{14}{9} \)

\[\sup_{d_n} \frac{df^*(\tau, d_n)}{d_n}, \quad \text{subject to} \]
\[n < d_i + p_i \leq 2n \text{ are distinct} \]
\[d_i = e_i + d_{i-1}, \quad 1 \leq i \leq n, \]
\[e_i = 1, \quad 1 \leq i \leq n \]
\[n \in \mathbb{Z}^+, e_i, d_i, p_i \in \mathbb{Q}^+, \quad 1 \leq i \leq n. \]
Outline

• Problem statement
• Main result
• Sketchy proof
• Conclusion
Conclusion

• Demand/resource ρ

• Speedup factor of partitioned EDF: 2.5556.

• WiP: Arbitrary deadline (uniproc only)

ρ

2005, Baruah&Fisher

2011, Chen&Chakraborty

Our result
Thank You!

Zhishan Guo
zsguo@ucf.edu
A schedulability test has speedup factor \(s, s \geq 1 \), if any task set that is schedulable by any algorithm on platform with processors of speed 1, it will be deemed schedulable by this test upon a platform with processors that are \(s \) times as fast.

- Speedup bound means a lower bound of speedup factor
- Major metric & standard tool for evaluating sub-optimality
- Potential pitfalls

Let $\tau = \{\tau_1, ..., \tau_n\}$ be a feasible solution to MP_1. Chose the smallest i s.t. $d_i \neq e_i + d_{i-1}$. Transform τ_i into τ_i'

$$dbf(\tau_i; \cdot)$$

$$dbf(\tau_{i-1}; \cdot)$$

$$dbf(\tau_i'; \cdot)$$

$$dbf(\tau_{i-1}'; \cdot)$$

$dbf(\tau', t) \leq t$ holds by construction
\[dbf(\tau_i, \cdot) \]

\[dbf(\tau_i', \cdot) \leq dbf^*(\tau_i, d_n) \leq dbf^*(\tau_i', d_n) \]