
CycleTandem: Energy-Saving Scheduling for

Real-Time Systems with Hardware Accelerators

Sandeep D’souza and Ragunathan (Raj) Rajkumar

Carnegie Mellon University

High (Energy) Cost of Accelerators

2

Energy Budget is limited

→ Focus on reducing hardware-accelerator power consumption

● Modern-day CPS

o real-time decision making

● GP-GPUs, ASICs, FPGAs, DSPs …

o high computational power

o with significant energy requirements

Outline

● Motivation

● Background & Related Work

○ Schedulability Analysis

○ Energy Management

● CycleSolo: Uniprocessor + Accelerator

● CycleTandem: Uniprocessor + Accelerator

● Multi-core Extensions

● Results

● Conclusion

System Model

4

• Sporadic Hard Real-Time Tasks 𝜏𝑖: 𝐶𝑖 , 𝐺𝑖 , 𝐷𝑖 , 𝑇𝑖
– 𝐶𝑖: CPU WCET of any job of task 𝜏𝑖
– 𝐺𝑖: Accelerator WCET of any job of task 𝜏𝑖

▪ 𝐺𝑖
𝑒: Accelerator Execution

▪ 𝐺𝑖
𝑚: CPU intervention

– 𝐷𝑖: Deadline

– 𝑇𝑖: Period (Minimum inter-arrival time)

• Fixed-priority and Fully-Partitioned Multi-core Scheduling

Assumptions: Each task has a single accelerator segment, tasks self-
suspend on the CPU & the accelerator is non-preemptive

*Kim et al. 2017

Related Work: Schedulability Analysis

Utilize the lock-based approach with MPCP [Rajkumar 1990]

→ proposed techniques can be extended to the server-based approach

5

• Lock-based Approach

o lock to arbitrate accelerator access

o [Elliott et al. 2012][Elliott et al. 2013]
[Chen et al. 2016][Patel et al. 2018] …

• Server-based Approach

o server accesses accelerator on behalf of tasks

o [Kim et al. 2017]

MPCP-based Analysis

Single Accelerator segment per-task

→ request-driven approach dominates the job-driven approach
6

• 𝑊𝑖
0 = 𝐶𝑖 + 𝐺𝑖 + 𝐵𝑖 , 𝑊𝑖

𝑘+1 = 𝐶𝑖 + 𝐺𝑖 + 𝐵𝑖 +σℎ=1
𝑖−1 𝐼𝑖,ℎ

• 𝐵𝑖: worst-case blocking, 𝐼𝑖,ℎ: worst-case preemption by 𝜏ℎ on 𝜏𝑖

• Blocking Calculation: No exact analysis (pessimistic)

o request-driven approach

▪ uses number of accelerator requests when task blocks

o job-driven approach

▪ uses number of jobs which arrive during task response time

o hybrid analysis

▪ best of both worlds

- with self-suspensions

CMOS Energy Model

Most GPUs (and hardware accelerators) only expose VFS to users

→ focus on reducing frequency to reduce power consumption

7

• Energy Model: 𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝑃𝑠𝑡𝑎𝑡𝑖𝑐

• Dynamic Switching Power

o 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝐾 ∗ 𝐶𝐿 ∗ 𝑉𝑑𝑑
2 ∗ 𝑓

o reduced using Voltage and Frequency Scaling (VFS)

• Static Leakage Power

o 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 = 𝑉𝑑𝑑 ∗ 𝐼𝑙𝑒𝑎𝑘𝑎𝑔𝑒

o reduced using low-power sleep states

• power gating and/or clock gating

Related Work: RT Energy Management

Required: analytical framework to determine energy-efficient

CPU + hardware accelerator frequencies, while guaranteeing schedulability

8

• VFS-based: [Saewong and Rajkumar ‘03][Hakan and Yang ‘03]
[Devadas and Aydin ‘10][Kandhalu et al. ‘11] …

• Sleep-state based: [Chang, Gabow and Khuller ‘12][Rowe et al. 2010]
[Fu et al. ‘15][Dsouza et al. 2016] …

• GPU Energy Management

o MERLOT [Santriaji and Hoffmann 2018]

▪ hardware approach, dynamically exploit GPU slack to reduce frequency

▪ does not consider schedulability, CPU+GPU execution

Focus on static frequency scaling (taskset-wide single frequency)

→ more predictable operation

Outline

● Motivation

● Background & Related Work

● CycleSolo: Uniprocessor

○ CycleSolo Variants

○ SysClock [Saewong et al. 2003]

○ Ratchet Search

● CycleTandem: Uniprocessor

● Multi-core Extensions

● Results

● Conclusion

CycleSolo: Variants

To minimize energy consumption

→ Find the smallest frequency which guarantees schedulability

10

• Uniprocessor + Hardware Accelerator combination

o only one frequency can be set

• CycleSolo-CPU

o only the CPU frequency can be scaled

• CycleSolo-Accelerator

o only the accelerator frequency can be scaled

• CycleSolo-ID

o the CPU & accelerator can only be scaled by a common factor

To find the smallest frequency

→ Find the maximum slack available in the schedule

CycleSolo: Impact of Blocking

We can only find the smallest frequency which guarantees schedulability,

given a schedulability-analysis technique

11

• Tasks block while waiting to access the non-preemptive accelerator

• Undefined Critical Instant

o Does not occur when all high-priority tasks come in together

o Due to blocking and self-suspensions

• Existing analysis assume the same critical instant, add pessimism by:

o considering the worst-case blocking

o modeling self-suspensions as release jitter

• All analyses are pessimistic, none are exact

CycleSolo: Impact of Self-Suspensions

In the presence of self-suspension

→ model the pessimism as effective scheduling instants

12

• SysClock*: Independent Tasks, No blocking & self-suspensions

o Calculate slack at each scheduling instant (job arrivals, deadlines)

• In the presence of self-suspensions

o Slack calculation (frequency calculation) depends on

▪ interference and blocking

▪ response time and WCET of high-priority tasks^

▪ operating frequency

*Saewong & Rajkumar ‘03^Chen et al. ‘16

Effective Scheduling Instants

13

• 𝑊𝑖
𝑘+1 = 𝐶𝑖 + 𝐺𝑖 + 𝐵𝑖 +σℎ=1

𝑖−1 𝐼𝑖,ℎ

• Interference of 𝝉𝒉 on 𝝉𝒊: 𝐼𝑖,ℎ = 𝛼𝑖,ℎ ∗ 𝐸ℎ

o 𝛼𝑖,ℎ = ceil((𝑊𝑖 +𝑊ℎ − 𝐸ℎ)/𝑇ℎ) → depends on high-priority response time & WCET

• For 𝝉𝒊, from an analysis perspective

o It appears that 𝝉𝒉 which self-suspends arrives at:

o 𝑆ℎ: = 𝒋 ∗ 𝑻𝒉 − 𝑊ℎ − 𝐸ℎ 𝑗 > 0}

Calculate Slack at all Effective Scheduling Instants

0 5 10

Self-Suspension 𝑾𝒉 − 𝑬𝒉

Effective Scheduling

Instant

𝜏ℎ 1,5

CycleSolo: Key Ideas

14

• Find a tight range 𝒇𝒍𝒐𝒘, 𝒇𝒉𝒊𝒈𝒉 in which the best frequency 𝑓𝑚𝑖𝑛 lies

• Perform a binary search over the range

o Yields the lowest frequency guaranteeing schedulability

• How it works:

o Consider tasks in decreasing order of priority

o For each 𝜏𝑖 compute a range 𝒇𝒍𝒐𝒘
𝒊 , 𝒇𝒉𝒊𝒈𝒉

𝒊 containing the lowest frequency

▪ ensures that 𝝉𝒊 and all its higher-priority tasks are schedulable

Iteratively refine the range as we go through the tasks→ Ratchet Search

Ratchet Search

τi schedulable with frequency 𝒇𝒊

when the high-priority interference is minimized

15

• Consider task τi, initial range 𝒇𝒍𝒐𝒘
𝒊−𝟏 , 𝒇𝒉𝒊𝒈𝒉

𝒊−𝟏

o Assume high-priority tasks are running at 𝒇𝒉𝒊𝒈𝒉
𝒊−𝟏

▪ minimizes interference, guarantees schedulability

o Slack calculation yields frequency 𝒇𝒊

Ratchet Search: Range Update

Range bounds always ratcheted up ↑

16

• Case 1: 𝑓𝑖 < 𝑓𝑙𝑜𝑤
𝑖−1

o At least one task misses deadlines at 𝑓𝑖

o 𝒇𝒊
𝒎𝒊𝒏 ∈ 𝒇𝒍𝒐𝒘

𝒊−𝟏 , 𝒇𝒉𝒊𝒈𝒉
𝒊−𝟏

→ No change to the range

• Case 2: 𝑓𝑙𝑜𝑤
𝑖−1 < 𝑓𝑖 < 𝑓ℎ𝑖𝑔ℎ

𝑖−1

o 𝜏𝑖 misses deadlines at frequencies < 𝑓𝑖

o 𝒇𝒊
𝒎𝒊𝒏 ∈ 𝒇𝒊, 𝒇𝒉𝒊𝒈𝒉

𝒊−𝟏
→ Lower bound ratcheted up ↑

• Case 3: 𝑓𝑖 > 𝑓ℎ𝑖𝑔ℎ
𝑖−1

o 𝜏𝑖 not schedulable at frequencies 𝑓ℎ𝑖𝑔ℎ
𝑖−1

o 𝒇𝒊
𝒎𝒊𝒏 ∈ 𝒇𝒉𝒊𝒈𝒉

𝒊−𝟏 , 𝒇𝒊 → Lower & Upper bounds ratcheted up ↑

Frequency Range
𝒇𝒎𝒂𝒙

𝟎

𝒇𝒍𝒐𝒘

𝒇𝒉𝒊𝒈𝒉

𝒇𝒊

𝒇𝒊

𝒇𝒍𝒐𝒘

𝒇𝒍𝒐𝒘

𝒇𝒊

𝒇𝒉𝒊𝒈𝒉

𝒇𝒍𝒐𝒘

CycleSolo: Putting it all together

17

• CycleSolo-CPU Example: 𝜏1: 𝐶1 = 10, 𝐺1 = 8, 𝑇1 = 50 , 𝜏2: 𝐶2 = 20, 𝐺2 = 5, 𝑇2 = 80

• Initial CPU Frequency Range set to:

o 𝒇𝒍𝒐𝒘
𝒊𝒏𝒊𝒕 = 𝟎. 𝟒𝟓, 𝒇𝒉𝒊𝒈𝒉

𝒊𝒏𝒊𝒕 = 𝟎. 𝟒𝟓 (CPU Utilization)

• Consider effective scheduling points for 𝜏1
o 𝜏1 → 50

0 50 10080

𝜏1 10,8,50

𝜏2 20,5,80

Consider 𝜏1→ 𝛼1
50 =

𝐶1

50 −𝐺1−𝐺2
= 0.27

𝑓1
𝑚𝑖𝑛 = m𝑖𝑛 𝛼1

50 = 𝟎. 𝟐𝟕

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑜𝑟

CPU Frequency = 0.27

CPU Frequency Range
𝒇𝒎𝒂𝒙

𝟎

𝒇𝒍𝒐𝒘 = 𝟎. 𝟒𝟓𝒇𝒉𝒊𝒈𝒉 = 𝟎. 𝟒𝟓

𝒇𝟏
𝒎𝒊𝒏 = 𝟎. 𝟐𝟕Case 1: 𝒇𝒊 < 𝒇𝒍𝒐𝒘

No Change

𝒇𝒉𝒊𝒈𝒉 = 𝟎. 𝟓𝟗

CycleSolo: Putting it all together

18

• CycleSolo-CPU Example: 𝜏1: 𝐶1 = 10, 𝐺1 = 8, 𝑇1 = 50 , 𝜏2: 𝐶2 = 20, 𝐺2 = 5, 𝑇2 = 80

• CPU Frequency Range set to:

o 𝒇𝒍𝒐𝒘
𝟎 = 𝟎. 𝟒𝟓, 𝒇𝒉𝒊𝒈𝒉

𝟎 = 𝟎. 𝟒𝟓

• Consider effective scheduling points for 𝜏2
o 𝜏2 → 42 and 80

Consider 𝜏2→ 𝛼1
80 =

2∗𝐶1+𝐶2

80 −𝐺1−𝐺2
= 0.59

𝑓1
𝑚𝑖𝑛 = m𝑖𝑛 𝛼1

80 = 𝟎. 𝟓𝟗

Effective Scheduling

Instant of 𝝉𝟏

0 50 10080

𝜏1 10,8,50

𝜏2 20,5,80

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑜𝑟

42 53

CPU Frequency = 0.59

No Slack in the
schedule until t=53 > 42

CPU Frequency Range
𝒇𝒎𝒂𝒙

𝟎

𝒇𝒉𝒊𝒈𝒉 = 𝟎. 𝟒𝟓 𝒇𝒍𝒐𝒘 = 𝟎. 𝟒𝟓

𝒇𝟏
𝒎𝒊𝒏 = 𝟎. 𝟓𝟗

Case 3: 𝒇𝒊 > 𝒇𝒉𝒊𝒈𝒉
Ratchet Both Bounds

𝒇𝒄𝒑𝒖
𝒔𝒐𝒍𝒐 ∈ [𝟎. 𝟒𝟓, 𝟎. 𝟓𝟗]

Binary Search → 𝒇𝒎𝒊𝒏 = 𝟎. 𝟓𝟗

Same Concepts Applicable for
CycleSolo-Accelerator and CycleSolo-ID

Outline

● Motivation

● Background & Related Work

● CycleSolo: Uniprocessor

● CycleTandem: Uniprocessor

○ See-Saw Theorem

○ Slack Squeezing

● Multi-core Extensions

● Conclusion

CycleTandem

To minimize energy consumption

→ Find the frequency pair (fcpu, facc) which minimizes energy

while guaranteeing schedulability

20

• Uniprocessor + Hardware Accelerator combination

o each can have their own frequency

• Slack in the system is finite:

o relationship between the CPU & accelerator frequency

• every CPU frequency ∃ min. accelerator frequency

o guaranteeing schedulability

o and vice versa

Feasible Frequencies

Energy-Optimal CPU Frequency 𝑓𝑐𝑝𝑢
𝑜𝑝𝑡

∈ [𝑓𝑐𝑝𝑢
𝑠𝑜𝑙𝑜 , 𝑓𝑐𝑝𝑢

ℎ𝑖𝑔ℎ
]

Energy-Optimal Accelerator Frequency 𝑓𝑎𝑐𝑐
𝑜𝑝𝑡

∈ [𝑓𝑎𝑐𝑐
𝑠𝑜𝑙𝑜, 𝑓𝑎𝑐𝑐

ℎ𝑖𝑔ℎ
]

→ CycleSolo helps bootstrap CycleTandem
21

• Lowest Feasible CPU frequency

o returned by CycleSolo-CPU: 𝑓𝑐𝑝𝑢
𝑠𝑜𝑙𝑜

• Lowest Feasible Accelerator frequency

o returned by CycleSolo-Acc: 𝑓𝑎𝑐𝑐
𝑠𝑜𝑙𝑜

• Highest Useful CPU Frequency 𝑓𝑐𝑝𝑢
ℎ𝑖𝑔ℎ

o Lowest CPU frequency corresponding to accelerator frequency 𝑓𝑎𝑐𝑐
𝑠𝑜𝑙𝑜

• Highest Useful Accelerator Frequency 𝑓𝑎𝑐𝑐
ℎ𝑖𝑔ℎ

o Lowest Accelerator frequency corresponding to CPU frequency 𝑓𝑐𝑝𝑢
𝑠𝑜𝑙𝑜

CycleTandem: See-Saw Theorem

Find the optimal CPU frequency fcpu or Accelerator frequency facc
which minimizes energy → search the feasible range

22

• The CPU and accelerator frequencies cannot be

o simultaneously lesser than 𝒇𝒊𝒅
𝒔𝒐𝒍𝒐 (CycleSolo-ID)

o to ensure schedulability

• 𝒇𝒊𝒅
𝒔𝒐𝒍𝒐 : CycleSolo-ID Frequency

o Lowest Common CPU and Accelerator Frequency

• CPU frequency increases

o Accelerator frequency decreases

o and vice versa

• Mapping between 𝑓𝑐𝑝𝑢 → 𝑓𝑎𝑐𝑐 (and vice versa)

𝒇𝒊𝒅
𝒔𝒐𝒍𝒐

CycleTandem: Slack Squeezing

23

• For a given 𝜹 increase in CPU
(accelerator) frequency 𝑓𝑐𝑝𝑢 (𝑓𝑎𝑐𝑐)

• if the accelerator (CPU) frequency
decreases by 𝜹′ > 𝜹

• then the accelerator (CPU)

o Squeezes slack more efficiently than

the CPU (accelerator)

Energy is a non-linear & non-convex function of the accelerator & CPU frequencies

C
P

U
 e

ff
ic

ie
n

t

A
cc

e
le

ra
to

r
e
ff

ic
ie

n
t

CycleTandem: Key Idea

Greedy-search heuristic: (1) Choose the endpoint with the lower energy,

(2) increase/decrease the frequency till a local minimum is reached

24

• Non-Linear Non-Convex Energy Function

o difficult to obtain the best solution

o search the feasible range using a heuristic

• How it works:

o Compute the feasible CPU frequency range (CycleSolo-CPU)

o Compute the feasible Accelerator frequency range (CycleSolo-Accelerator)

o Search (heuristic or brute force) over the smaller of the two ranges

Outline

● Motivation

● Background & Related Work

● CycleSolo: Uniprocessor

● CycleTandem: Uniprocessor

● Multi-core Extensions

○ Assumptions

○ Extensions

○ SyncAware-WFD

● Results

● Conclusion

Multi-Core Assumptions

26

• all CPU cores are in the same power domain

• can only be set to the same frequency

• fully-partitioned scheduling

If each core has its own frequency

→ Response Time of task on a core can depend on frequency of another core

→ impact of self suspensions on remote blocking

Multi-Core Extensions

27

• Key Observations:

o RatchetSearch still applicable → CycleSolo works

o See-Saw Theorem still holds → CycleTandem works

• Difference:

o Interference only by tasks on the same core

o Remote Blocking by tasks on other core

CycleSolo & CycleTandem can be used for Multi-Core Processors,

which have a single power domain across all CPU cores

The Impact of Task Partitioning

28

• All CPU cores can only be set to the same frequency

o Load balancing is useful

o Worst-Fit Decreasing (WFD) known to yield balanced partitions

• Blocking & Self-Suspensions

o Effects can be felt by tasks on other cores

• Sync-Aware WFD: based on [Lakshmanan et al. 2011]

o Load Balance while constraining self-suspending tasks to 𝜓 = 𝑐𝑒𝑖𝑙 𝛾𝑎𝑐𝑐 ∗ 𝑚 cores

o 𝛾𝑎𝑐𝑐 is the fraction of the CPU load belonging to self-suspending tasks

Sync-Aware WFD can restrict the schedulability pessimism of

blocking and self-suspensions to a few cores

Outline

● Motivation

● Background & Related Work

● CycleSolo: Uniprocessor

● CycleTandem: Uniprocessor

● Multi-core Extensions

● Results

○ Analytical Results

○ TX2 Results

● Conclusion

Analytical Results

30

• Randomly-generated Tasksets: UUnifast-Discard

• Energy: Compared to without Energy Management

o CycleTandem : up to 71.88% lower

o CycleSolo-ID : up to 71.03% lower

o CycleSolo-Accel : up to 63.41% lower

o CycleSolo-CPU : up to 27.42% lower

• CycleTandem greedy-search heuristic vs brute force:

o Worst-case 1.53% greater energy than brute force

CycleSolo and CycleTandem can deliver significant energy savings

Multi-core Results: Partitioning

31

• 4-core processor considered

• CycleTandem: WFD vs SyncAware-WFD

o Schedulability : SyncAware-WFD 6.3% more tasksets

o Energy-Savings: SyncAware-WFD up to 3.3% greater

SyncAware-WFD yields marginally better schedulability and energy

savings than WFD, with the same algorithmic complexity

Real-Platform Evaluation: NVIDIA TX2

32

• 4-core ARM processor, 256-core Integrated GPU

o CPU cores can only be set to the same frequency

o GPU frequency can be set independently

• Energy: Compared to without Energy Management

o CycleTandem : up to 44.29% lower → 1.78x battery life

o CycleSolo-ID : up to 44.18% lower

o CycleSolo-Accel : up to 7.81% lower

o CycleSolo-CPU : up to 32.01% lower

Significant real-world energy savings are possible

Conclusion

33

• CycleSolo: “Slowest Speed is Best”

o scenarios where only the CPU/accelerator/common frequency can be set

o slack computation in the presence of blocking and self-suspensions

• CycleTandem: “Better frequency pair, lower energy”

o CPU and accelerator frequency can be independently set

o non-convex optimization problem: search the feasible range

• Multi-Core Extensions:

o for scenarios where all CPU cores have the same frequency

o CycleSolo & CycleTandem are still applicable

Analysis framework for Energy-Saving Scheduling with Hardware Accelerators

→ lays the groundwork for analyzing more complex scenarios

Thank You ! Questions ?

