CycleTandem: Energy-Saving Scheduling for
Real-Time Systems with Hardware Accelerators

Sandeep D’souza and Ragunathan (Raj) Rajkumar
Carnegie Mellon University

Carnegie
Mellon °ag§lstam|ah
University

High (Energy) Cost of Accelerators

e Modern-day CPS

o real-time decision making
e GP-GPUs, ASICs, FPGAs, DSPs ...

o high computational power
o with significant energy requirements

Energy Budget is limited

- Focus on reducing hardware-accelerator power consumption

Carnegie Mellon University

Outline

e Motivation
e Background & Related Work
O Schedulability Analysis
O Energy Management
e CycleSolo: Uniprocessor + Accelerator
e CycleTandem: Uniprocessor + Accelerator
e Multi-core Extensions
e Results
e Conclusion

Carnegie Mellon University

System Model

 Sporadic Hard Real-Time Tasks t;: (C;, G;, D;, T; Vegment GPU access segment M egment
l l l l l) e « >
— C;: CPU WCET of any job of task t; cPu |
. i | @ Trigger GPU computation i@ Copy results
— G;: Accelerator WCET of any job of task t; copy data to CPY
= G{:Accelerator Execution GPU
. . GPU kernel execution
= G/™: CPU intervention *Kim et al. 2017
— D;: Deadline

— T;: Period (Minimum inter-arrival time)
* Fixed-priority and Fully-Partitioned Multi-core Scheduling

Assumptions: Each task has a single accelerator segment, tasks self-
suspend on the CPU & the accelerator is non-preemptive

Carnegie Mellon University

Related Work: Schedulability Analysis

e Lock-based Approach

o lock to arbitrate accelerator access n
o [Elliott et al. 2012][Elliott et al. 2013] i
[Chen et al. 2016][Patel et al. 2018] ...
e Server-based Approach e
0N

o server accesses accelerator on behalf of tasks
o [Kimetal. 2017]

Utilize the lock-based approach with MPCP [Rajkumar 1990]
- proposed techniques can be extended to the server-based approach

Carnegie Mellon University

MPCP-based Analysis

- with self-suspensions

e WP=Ci+G +B;, WKr=C+G+B;+Y L1,

e B;:worst-case blocking, I; ,: worst-case preemption by 7, on T;

e Blocking Calculation: No exact analysis (pessimistic)

o request-driven approach

uses number of accelerator requests when task blocks

o job-driven approach

uses number of jobs which arrive during task response time

o hybrid analysis

best of both worlds

Single Accelerator segment per-task
- request-driven approach dominates the job-driven approach

Carnegie Mellon University

CMQOS Energy Model

* Energy Model: Pyt = Paynamic + Pstatic

L
e Dynamic Switching Power _ 1
O denamic:K*CL*Vo%d*f al

o reduced using Voltage and Frequency Scaling (VFS)
e Static Leakage Power

O Pstaric = Vga * Ileakage
o reduced using low-power sleep states 1 ! %g{

e power gating and/or clock gating

Most GPUs (and hardware accelerators) only expose VFS to users
-=> focus on reducing frequency to reduce power consumption

Carnegie Mellon University

Related Work: RT Energy Management

e VFS-based: [Saewong and Rajkumar ‘03][Hakan and Yang ‘03]
[Devadas and Aydin ‘10][Kandhalu et al. ‘11] ...

e Sleep-state based: [Chang, Gabow and Khuller ‘12][Rowe et al. 2010]
[Fu et al. “15][Dsouza et al. 2016] ...

e GPU Energy Management
o MERLOT [Santriaji and Hoffmann 2018]
= hardware approach, dynamically exploit GPU slack to reduce frequency

= does not consider schedulability, CPU+GPU execution

Focus on static frequency scaling (taskset-wide single frequency)
= more predictable operation

Carnegie Mellon University

Outline

e Motivation

e Background & Related Work

e CycleSolo: Uniprocessor
O CycleSolo Variants
O SysClock [Saewong et al. 2003]
O Ratchet Search

e CycleTandem: Uniprocessor

e Multi-core Extensions

e Results

e Conclusion

Carnegie Mellon University

CycleSolo: Variants

e Uniprocessor + Hardware Accelerator combination
o only one frequency can be set
e (CycleSolo-CPU
o only the CPU frequency can be scaled
e (CycleSolo-Accelerator
o only the accelerator frequency can be scaled
e (CycleSolo-ID
o the CPU & accelerator can only be scaled by a common factor

To find the smallest frequency
- Find the maximum slack available in the schedule

Carnegie Mellon University

10

CycleSolo: Impact of Blocking

e Tasks block while waiting to access the non-preemptive accelerator
e Undefined Critical Instant
o Does not occur when all high-priority tasks come in together
o Due to blocking and self-suspensions
e Existing analysis assume the same critical instant, add pessimism by:
o considering the worst-case blocking
o modeling self-suspensions as release jitter
e All analyses are pessimistic, none are exact

We can only find the smallest frequency which guarantees schedulability,
given a schedulability-analysis technique

Carnegie Mellon University

11

CycleSolo: Impact of Self-Suspensions

e SysClock*: Independent Tasks, No blocking & self-suspensions

o Calculate slack at each scheduling instant (job arrivals, deadlines) »
e |nthe presence of self-suspensions f ﬁf
° P W

o Slack calculation (frequency calculation) depends on @
= interference and blocking
= response time and WCET of high-priority tasks?
= operating frequency

In the presence of self-suspension

- model the pessimism as effective scheduling instants

: _ . 12
Carnegie Mellon University AChen et al. ‘16 *Saewong & Rajkumar ‘03

Effective Scheduling Instants

e W*=C+G+B+Y L Ln
* Interferenceoftyont:), = a;p, *xEy

o a;p = ceil((W; + W, — Ey)/Ty) 2 depends on high-priority response time & WCET
e For 7;, from an analysis perspective

o It appears that T, which self-suspends arrives at:
o Sp:= {j*Tp —|Wy — Ep|j > 0}

Self-Suspension N w, —E,
[
Th(l,S) ‘ I ‘ I
0 Effective Scheduling 5 10
Instant

Calculate Slack at all Effective Scheduling Instants

Carnegie Mellon University

CycleSolo: Key ldeas

e Find a tight range [f,ow, f,u-gh] in which the best frequency f,,;, lies
e Perform a binary search over the range
o Yields the lowest frequency guaranteeing schedulability
* How it works:
o Consider tasks in decreasing order of priority
o For each t; compute a range [ffaw, f;ligh] containing the lowest frequency

" ensures that t; and all its higher-priority tasks are schedulable

Iteratively refine the range as we go through the tasks =2 Ratchet Search

Carnegie Mellon University

14

Ratchet Search

* Consider task Tj, initial range [flow, fhlgh

o Assume high-priority tasks are running at &1 high

= minimizes interference, guarantees schedulability

o Slack calculation yields frequency fi

1; schedulable with frequency f*
when the high-priority interference is minimized

Carnegie Mellon University

15

Ratchet Search: Range Update
« Casel:ft < fil
o At least one task misses deadlines at f*

o fmme|filf ,ugh] —> No change to the range

« Case2:]

o T; misses deadlines at frequencies < f*
© f?un € [fi» fhlgh] -> Lower bound ratcheted up 1

Fre

fmax
f high

quency Range

<fl<fhlgh *fi

f { low

—

- Case3:f! > fhil-gh

: i—1
o T; not schedulable at frequencies f; p

o fline

[f high | i] -> Lower & Upper bounds ratcheted up 1

Range bounds always ratcheted up T*

Carnegie Mellon University

16

CycleSolo: Putting 1t all together

¢ CVCIESOIO'CPU Example: Tq. (Cl — 10, Gl — 8, T]_ — 50), Ty (CZ — 20, GZ — 5, Tz — 80)

e [|nitial CPU Frequency Range set to:

ini i PU F R
o [firit = 0.45, finit, = 0.45] (CPU Utilization) ; v Frequency Range
max
* Consider effective scheduling points for 7,
o 11250 frigh = 0.45 flow 2.45
: 50 _ €1 _ . |
ConS|der.rlé ai® = o=, = 027 Casel: f; < fiow min _ 0 27
i = min(ai®) = 0.27 No Change 0
CPU Frequency =0.27
A A
7,(10,8,50) ‘
W .(20580) | |
Accelerator naE MEmesiaG
Al
0) 50 80 100

Carnegie Mellon University

17

CycleSolo: Putting 1t all together

¢ CVCIESOIO'CPU Example: Tq. (Cl — 10, Gl — 8, Tl — 50), Ty (CZ — 20, GZ — 5, Tz — 80)
e CPU Frequency Range set to:

o |flow =0.45,fhi,n = 0.45] ;::xFrequency Range
* Consider effective scheduling points for 7, Fiih = 0.59
o T, =2 42and80 fmgh =0 45| r 2.45
f3oto € [0.45,0.59]
Binary Search 2 f,,;;, = 0.59 0
Effective Scheduling (@R

ISP Fegauency = 0.59
[

7,(10,8,50) L
B ©:(20,5,80)

Same Concepts Applicable for

Accelerator

CycIeSoIo-AcceIerator and CycleSolo-ID

0

Carnegie Mellon University

80

100

18

Outline

e Motivation

e Background & Related Work

e CycleSolo: Uniprocessor

e CycleTandem: Uniprocessor
O See-Saw Theorem
O Slack Squeezing

e Multi-core Extensions

e Conclusion

Carnegie Mellon University

CycleTandem

e Uniprocessor + Hardware Accelerator combination

o each can have their own frequency
e Slack in the system is finite:
o relationship between the CPU & accelerator frequency

e everyCP

o guar

U frequency 3 min. accelerator frequency
anteeing schedulability

o and vice versa

To minimize energy consumption
= Find the frequency pair (f,, facc) which minimizes energy
while guaranteeing schedulability

Carnegie Mellon University

20

Feasible Freqguencies

e Lowest Feasible CPU frequency

o returned by CycleSolo-CPU: f35:°
e Lowest Feasible Accelerator frequency
o returned by CycleSolo-Acc: f;

e Highest Useful CPU Frequency fcf;iitgh

o Lowest CPU frequency corresponding to accelerator frequency f,

solo

e Highest Useful Accelerator Frequency fa}?gg n

o Lowest Accelerator frequency corresponding to CPU frequency fcpu

solo
acc

solo

Energy-Optimal CPU Frequency f(:%t € [f5h, CZ‘;fh]

Energy-Optimal Accelerator Frequency faocit €| ascoclo, ahcl&g "

—> CycleSolo helps bootstrap CycleTandem

]

Carnegie Mellon University

21

CycleTandem: See-Saw Theorem

e The CPU and accelerator frequencies cannot be

o simultaneously lesser than £$9'° (CycleSolo-ID)

o to ensure schedulability

o f39%° . cycleSolo-ID Frequency

o Lowest Common CPU and Accelerator Frequency
e CPU frequency increases

o Accelerator frequency decreases

o and vice versa

e Mapping between f.,,, = f4c (and vice versa)

Find the optimal CPU frequency f.,, or Accelerator frequency f,.

which minimizes energy = search the feasible range

22

Carnegie Mellon University

CycleTandem: Slack Squeezmg

* Foragiven é increase in CPU T [== Acoslerstor Frequency (r__)
(accelerator) frequency fcpy, (facc) ~oesk 1 1
" -1 !
e if the accelerator (CPU) frequency & ool | :*E |

cC .
decreases by 6’ > 6 s Long
® 085 L =
e then the accelerator (CPU) o a g |
.. 5 ! S

o Squeezes slack more efficiently than s OF 1S
NP Y

the CPU (accelerator) Sorsp VSN
1901

0.7 — ' '
0.6 0.7 0.8 0.9 1

CPU Frequency-Scaling Factor (fcpu)

Energy is a non-linear & non-convex function of the accelerator & CPU frequencies

Carnegie Mellon University

23

CycleTandem: Key Idea

e Non-Linear Non-Convex Energy Function
o difficult to obtain the best solution
o search the feasible range using a heuristic

e How it works:
o Compute the feasible CPU frequency range (CycleSolo-CPU)
o Compute the feasible Accelerator frequency range (CycleSolo-Accelerator)
o Search (heuristic or brute force) over the smaller of the two ranges

Greedy-search heuristic: (1) Choose the endpoint with the lower energy,
(2) increase/decrease the frequency till a local minimum is reached

Carnegie Mellon University

24

Outline

e Motivation
e Background & Related Work
e CycleSolo: Uniprocessor
e CycleTandem: Uniprocessor
e Multi-core Extensions
O Assumptions
O Extensions
O SyncAware-WFD
e Results
e Conclusion

Carnegie Mellon University

Multi-Core Assumptions

e all CPU cores are in the same power domain
e canonly be set to the same frequency
e fully-partitioned scheduling

If each core has its own frequency
= Response Time of task on a core can depend on frequency of another core
- impact of self suspensions on remote blocking

Carnegie Mellon University

Multl-Core Extensions

e Key Observations:

o RatchetSearch still applicable = CycleSolo works

o See-Saw Theorem still holds = CycleTandem works
e Difference:

o Interference only by tasks on the same core

o Remote Blocking by tasks on other core

CycleSolo & CycleTandem can be used for Multi-Core Processors,
which have a single power domain across all CPU cores

Carnegie Mellon University

27

The Impact of Task Partitioning

e All CPU cores can only be set to the same frequency Lo/
o Load balancing is useful \”’““\
o Worst-Fit Decreasing (WFD) known to yield balanced partitions \,\f ’ |

e Blocking & Self-Suspensions \
o Effects can be felt by tasks on other cores

e Sync-Aware WFD: based on [Lakshmanan et al. 2011]
o Load Balance while constraining self-suspending tasks to) = ceil(y,.. * m) cores

O Yqcc IS the fraction of the CPU load belonging to self-suspending tasks

Sync-Aware WFD can restrict the schedulability pessimism of
blocking and self-suspensions to a few cores

. . . 28
Carnegie Mellon University

Outline

e Motivation
e Background & Related Work
e CycleSolo: Uniprocessor
e CycleTandem: Uniprocessor
e Multi-core Extensions
e Results
O Analytical Results
O TX2 Results
e Conclusion

Carnegie Mellon University

Analytical Results

e Randomly-generated Tasksets: UUnifast-Discard 14

e Energy: Compared to without Energy Management sl % ”
o CycleTandem :up to 71.88% lower go; - T e
o CycleSolo-ID :up to 71.03% lower N S & .
o CycleSolo-Accel : up to 63.41% lower g 04 / E%:Fiq:fy"ilg
o CycleSolo-CPU : up to 27.42% lower © 02 e

e CycleTandem greedy-search heuristic vs brute force: 01 02 03 04 05 08 07

CPU Utilization (U__)
cpu

o Worst-case 1.53% greater energy than brute force

CycleSolo and CycleTandem can deliver significant energy savings

. 5 30
Carnegie Mellon University

Multi-core Results: Partltlonlng

e 4-core processor considered > [cyoieTandem Grosdy WD
e CycleTandem: WFD vs SyncAware-WFD

w

N
ur

|| —6— CycleTandem-BruteForce WFD
— & = CycleTandem-Greedy SA-WFD
|| — % — CycleTandem-BruteForce SA-WFD

o Schedulability : SyncAware-WFD 6.3% more tasksets
o Energy-Savings: SyncAware-WFD up to 3.3% greater

—_
- [8)] N
T T T

Normalized Energy (Etota|)

©
ul
T

o

0.5 1 1.5
CPU Utilization (U

o

2

cpu)

SyncAware-WFD yields marginally better schedulability and energy

savings than WFD, with the same algorithmic complexity

Carnegie Mellon University

2.5

3

31

Real-Platform Evaluation: NVIDIA TX2

e 4-core ARM processor, 256-core Integrated GPU
o CPU cores can only be set to the same frequency
o GPU frequency can be set independently
e Energy: Compared to without Energy Management
o CycleTandem :up to 44.29% lower = 1.78x battery life
o CycleSolo-ID :up to 44.18% lower
o CycleSolo-Accel : up to 7.81% lower
o CycleSolo-CPU :upto 32.01% lower

Significant real-world energy savings are possible

Carnegie Mellon University

32

Conclusion

e CycleSolo: “Slowest Speed is Best”
o scenarios wWhere only the CPU/accelerator/common frequency can be set
o slack computation in the presence of blocking and self-suspensions
e CycleTandem: “Better frequency pair, lower energy”
o CPU and accelerator frequency can be independently set
O hon-convex optimization problem: search the feasible range
e Multi-Core Extensions:
o for scenarios where all CPU cores have the same frequency
o CycleSolo & CycleTandem are still applicable

Analysis framework for Energy-Saving Scheduling with Hardware Accelerators
—> lays the groundwork for analyzing more complex scenarios

Carnegie Mellon University

33

Thank You ! Questions ? .

