A Generic Coq Proof of Typical Worst-Case Analysis

Pascal Fradet, Maxime Lesourd, Jean-François Monin, Sophie Quinton

RTSS’18
December 13, 2018
Context: Weakly Hard Real Time Systems

Hard Real Time Systems

Schedulability: All activations of a task meet their deadline.
Hard Real Time Systems

Schedulability: All activations of a task meet their deadline.

What if we don’t need *all* jobs to meet their deadline?
Hard Real Time Systems

Schedulability: All activations of a task meet their deadline.

What if we don’t need *all* jobs to meet their deadline?

Weakly Hard Real Time Systems

(*m, k*) *guarantees*: Out of *k* consecutive activations of a task, at most *m* miss their deadline.
Typical Worst Case Analysis (TWCA) is a family of analyses providing \((m, k)\) guarantees.
Typical Worst Case Analysis (TWCA) is a family of analyses providing \((m, k)\) guarantees.

Variants:

- Fixed Priority (Non) Preemptive Scheduling
- Earliest Deadline First (EDF)
- Weighted Round Robin
- Extensions for task chains, multiprocessors, ...
Problem: Extending/improving an analysis is tricky & tedious

- Risk of introducing mistakes when reusing an analysis on a “similar” model
- Proofs must be redone from scratch
- Complex analyses often require complex proofs

Contribution:
- A formal proof of a generic methodology to build TWCA based on a simple set of requirements.
Problem Statement and Contribution

Problem: Extending/improving an analysis is tricky & tedious

▶ Risk of introducing mistakes when reusing an analysis on a “similar” model
▶ Proofs must be redone from scratch
▶ Complex analyses often require complex proofs

Contribution:

▶ A formal proof of a generic methodology to build TWCA based on a simple set of requirements.
Typical Worst Case Analysis

Generic Typical Worst Case Analysis

Generic Typical Worst Case Analysis in Coq
Table of Contents

Typical Worst Case Analysis

Generic Typical Worst Case Analysis

Generic Typical Worst Case Analysis in Coq
System Model (FPP)

- Uniprocessor
- Task arrival modeled by arrival curves
 - Maximal number of activations for a given duration
 - Maximal separation between k consecutive activations
- Fixed Priority Preemptive (FPP) scheduling
System Model (FPP)

- Uniprocessor
- Task arrival modeled by arrival curves
 - Maximal number of activations for a given duration
 - Maximal separation between k consecutive activations
- Fixed Priority Preemptive (FPP) scheduling
- Typical and overload components
Principle of Typical Worst Case Analysis

Objective:
Given a task τ and k, compute an (m, k) guarantee for τ.

Assumption:
In the absence of overload the system is schedulable.
Principle of Typical Worst Case Analysis

Properties:

- Overload activations can only affect their busy window
- The size of busy windows can be bounded
- Knowing which overload tasks are activated in a busy window, we can bound the number of deadline misses in that window.
Principle of Typical Worst Case Analysis

Analysis:

1. Compute how many overload activations can impact a sequence of k consecutive activations of τ.

2. Analyze possible packings of overload activations into busy windows spanning these activations by a reduction to ILP.

![Diagram showing three tasks τ_1, τ_2, and τ_3 with k activations marked.]

k activations
Principle of Typical Worst Case Analysis

Analysis:

1. Compute how many overload activations can impact a sequence of k consecutive activations of τ.

2. Analyze possible packings of overload activations into busy windows spanning these activations by a reduction to ILP.
Principle of Typical Worst Case Analysis

Analysis:

1. Compute how many overload activations can impact a sequence of k consecutive activations of τ.

2. Analyze possible packings of overload activations into busy windows spanning these activations by a reduction to ILP.
Principle of Typical Worst Case Analysis

Analysis:

1. Compute how many overload activations can impact a sequence of k consecutive activations of τ.
2. Analyze possible packings of overload activations into busy windows spanning these activations by a reduction to ILP.

\[\Delta t \]

\[\tau_3 \]

\[\tau_2 \]

\[\tau_1 \]

\[w_1 \]

\[w_2 \]

\[k \text{ activations} \]

<table>
<thead>
<tr>
<th></th>
<th>w_1</th>
<th>w_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_3</td>
<td>\top</td>
<td>\top</td>
</tr>
<tr>
<td>τ_2</td>
<td>\bot</td>
<td>\top</td>
</tr>
<tr>
<td>N_1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Table of Contents

Typical Worst Case Analysis

Generic Typical Worst Case Analysis

Generic Typical Worst Case Analysis in Coq
How Generic?

- Generic \(w.r.t. \) the scheduling policy

- Generic \(w.r.t. \) the activation model

- Generic \(w.r.t. \) the type of combinations

- Generic \(w.r.t. \) a notion of schedulability analysis
How Generic?

- Generic w.r.t. the scheduling policy
 We need some notion of busy window

- Generic w.r.t. the activation model
 Today we focus on arrival curves

- Generic w.r.t. the type of combinations
 Finer grained abstraction

- Generic w.r.t. a notion of schedulability analysis
 It only needs to be “correct”
A Recipe for TWCA

Objective:
Given a task τ and k, compute an (m, k) guarantee for τ.
A Recipe for TWCA

Objective:
Given a task τ and k, compute an (m, k) guarantee for τ.

Ingredients:

- A way to decompose traces into isolated intervals: *Analyzeable windows*
- An abstraction of the activations inside analyzeable windows: *Combinations*
- A local deadline miss analysis based on combinations: *Local analysis*
- A bound on the size of analyzeable windows of task τ
- An upper bound on the separation of activations of task τ
Principle of GTWCA

Analysis:

1. Compute how many overload activations can impact a sequence of k consecutive activations of τ.
2. Analyze possible packings of activations into analyzable windows spanning these activations by a reduction to ILP.
Principle of GTWCA

Analysis:

1. Compute how many overload activations can impact a sequence of k consecutive activations of τ.

2. Analyze possible packings of activations into analyzable windows spanning these activations by a reduction to ILP.
Principle of GTWCA

Analysis:

1. Compute how many overload activations can impact a sequence of k consecutive activations of τ.

2. Analyze possible packings of activations into analyzable windows spanning these activations by a reduction to ILP.

\[
\begin{array}{c}
\tau_3 \\
\tau_2 \\
\tau_1 \\
k \text{ activations}
\end{array}
\]

\[
\begin{array}{c}
w_1 \\
w_2 \\
w_3
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
\tau_3 & w_1 & w_2 & w_3 \\
\hline
1 & 0 & 0 \\
\tau_2 & 1 & 0 & 0 \\
N_1 & 1 & 0 & 0 \\
\hline
\end{array}
\]
Principle of GTWCA

Analysis:

1. Compute how many overload activations can impact a sequence of k consecutive activations of τ.

2. Analyze possible packings of activations into analyzable windows spanning these activations by a reduction to ILP.

<table>
<thead>
<tr>
<th></th>
<th>w_1</th>
<th>w_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>τ_2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>N_1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

k activations

Δt

t

w_1

w_2
Instantiations of GTWCA

Instantiation to several scheduling Policies:

- FPP
- FPNP
- EDF

Bonus: derivation of the existing FPP analysis

Principle: work on combinations

- Remove higher priority tasks
- Distinguish overload tasks
- Use boolean combinations
Instantiations of GTWCA

Instantiation to several scheduling Policies:

- FPP
- FPNP
- EDF

Bonus: derivation of the existing FPP analysis

Principle: work on combinations

- Remove higher priority tasks
- Distinguish overload tasks
- Use boolean combinations
Table of Contents

Typical Worst Case Analysis

Generic Typical Worst Case Analysis

Generic Typical Worst Case Analysis in Coq
Real Time Systems Analysis in Coq

Coq

- Formal language
- Interactive proof system
- Increasingly used in industry
Real Time Systems Analysis in Coq

Coq

- Formal language
- Interactive proof system
- Increasingly used in industry

Prosa

- Proofs of schedulability analyses
- Readable specifications of real-time systems
- Written in Coq
Artifact

We have reused from Prosa:

- Fundamental definitions
- System model
- Schedulability analysis for FPP
We have reused from Prosa:
▶ Fundamental definitions
▶ System model
▶ Schedulability analysis for FPP

We have formalized in Coq:
▶ The recipe for GTWCA
▶ A proof of the reduction to ILP
▶ An instantiation to the arrival curves model
▶ An instantiation to the FPP scheduling policy
Lessons Learned

The effort to formalize in Coq is not negligible...

- TWCA for FPP: 2 months
- GTWCA: 3 weeks
- Instantiation to FPP: 2 weeks
Lessons Learned

The effort to formalize in Coq is not negligible...

- TWCA for FPP: 2 months
- GTWCA: 3 weeks
- Instantiation to FPP: 2 weeks

...but:

- Being explicit about hypotheses helps generalizing safely
- Generic proofs allow us to reuse model specific results
Conclusion & Future Work

What we have:

- A generic framework for TWCA
- A simple methodology to instantiate the analysis
- A formalization and proof in Coq of our results

Future work:

- Extend GTWCA to more complex system models
- Investigate other types of combinations
Conclusion & Future Work

What we have:

- A generic framework for TWCA
- A simple methodology to instantiate the analysis
- A formalization and proof in Coq of our results

Future work:

- Extend GTWCA to more complex system models
- Investigate other types of combinations