Many suspensions, many problems: A review of self-suspending tasks in real-time systems

Jian-Jia Chen, Geoffrey Nelissen, Wen-Hung Huang, Maolin Yang, Björn Brandenburg, Konstantinos Bletsas, Cong Liu, Pascal Richard, Frédéric Ridouard, Neil Audsley, Raj Rajkumar, Dionisio de Niz and Georg von der Brüggen

Real-Time Systems Journal (Open Access)

12,12,2018 at RTSS
Reasons for Suspension: Hardware Acceleration

Use FPGA in parallel (suspension aware).

Not use FPGA in parallel (busy waiting).
Reasons for Self-Suspensions: Locking Protocols

- Distributed PCP in the above example
- Semaphores in multiprocessor systems: remote blocking due to mutual exclusion
Purpose of the paper

Motivation: Several errors were discovered:

- Incorrect quantification of jitter for self-suspending task systems
- Incorrect assumptions on the critical instant
- Incorrectly counting highest-priority self-suspension time to reduce the interference on the lower-priority tasks
- Incorrect fixed-priority scheduling with period enforcement
- Incorrect conversion of higher-priority self-suspending tasks into sporadic tasks with release jitter
Purpose of the paper

Our Mission:
- summarize the existing self-suspending task models
- provide the general methodologies to handle self-suspension
- explain the misconceptions in the literature, their consequences, and potential solutions to fix those flaws
- examine the inherited flaws in multiprocessor synchronization, due to a flawed analysis in self-suspending task models
- provide the summary of the computational complexity classes of different self-suspending task models and systems
Suspension Induces Jitter under Fixed-Priority

Schedulability test of task τ_k:

$\exists t \mid 0 < t \leq D_k \quad \text{s.t.} \quad C_k + S_k + \sum_{j=1}^{k-1} \left\lfloor \frac{t + S_j}{T_j} \right\rfloor C_j \leq t.$

The above analysis

<table>
<thead>
<tr>
<th>τ_i</th>
<th>C_i</th>
<th>S_i</th>
<th>T_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>τ_2</td>
<td>5</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>τ_3</td>
<td>1</td>
<td>0</td>
<td>∞</td>
</tr>
</tbody>
</table>
Suspension Induces Jitter under Fixed-Priority

Schedulability test of task τ_k:
\[
\exists t \mid 0 < t \leq D_k \quad \text{s.t.} \quad C_k + S_k + \sum_{j=1}^{k-1} \left\lceil \frac{t + S_j}{T_j} \right\rceil C_j \leq t.
\]

The above analysis

<table>
<thead>
<tr>
<th>τ_i</th>
<th>C_i</th>
<th>S_i</th>
<th>T_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>τ_2</td>
<td>5</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>τ_3</td>
<td>1</td>
<td>0</td>
<td>∞</td>
</tr>
</tbody>
</table>

Worst Case