Work-in-Progress: Preference-Oriented Scheduling in Multiprocessor Real-Time Systems

Qin Xia1, Dakai Zhu2 and Hakan Aydin3

1Xian Jiaotong University, China
2The University of Texas at San Antonio, USA
3George Mason University, USA

2018 RTSS, Nashville, TN
Beyond Timeliness: Execution Preferences!

- Classical RT schedulers treat tasks the same
 - EDF/RMS: execute all tasks at their earliest times
 - EDL/DP: execute all tasks at their latest times

- Tasks may prefer to be executed early or late
 - Fault-tolerant systems w. primary/backup model

An example of two tasks $T_1 (2, 5)$, $T_2 (3, 10)$ with their backups B_1 and B_2
Beyond Timeliness: Execution Preferences!

- Classical RT schedulers treat tasks the same
 - EDF/RMS: execute all tasks at their earliest times
 - EDL/DP: execute all tasks at their latest times
- Tasks may prefer to be executed early or late
 - Fault-tolerant systems w. primary/backup model

An example of two tasks $T_1 (2, 5), T_2 (3, 10)$ with their backups B_1 and B_2.

PO Scheduler!
Models and Prior Work

- Real-time tasks with execution preferences
 - Set Ψ of periodic task $T_i (c_i, p_i)$: WCET, period
 - Each task has a preference: $\Psi = \Psi_S \cup \Psi_L$
 - Early tasks: as soon as possible (ASAP)
 - Late tasks: as late as possible (ALAP)
 - Preference value (PV)
 - For each task instance
 - Early/late tasks: finish/start times

Prior work: Preference-Oriented Schedulers

- POED: deadline based PO scheduler [Guo’15]
- POFP: fixed-priority based PO schedule [Begam’16]
PO Scheduling: Multiprocessor Systems

- Several observations for PO partitioning
 - Each processor: mixture of early/late tasks
 - Early/late tasks w. harmonic periods \Rightarrow same P

- POPA (period-aware) partitioning
 - Tasks w. harmonic periods \Rightarrow pairs (or groups)
 - Task pair: one early and one late tasks w. same period
 - Task group: balanced early/late task utilizations
 - Sort task pairs (groups) w. aggregated utilization
 - Map task pairs (groups) \Rightarrow processors
 - WFD or other heuristics
 - Map remaining individual tasks at the end