WIP: Response Time Bounds for Typed DAG Parallel Tasks on Heterogeneous Multi-cores

Meiling Han¹, Nan Guan², Jinghao Sun¹,², Qingqiang He², Qingxu Deng¹ and Weichen Liu³

¹Northeastern University, China
²Hong Kong Polytechnic University, Hong Kong
³Nanyang Technological University, Singapore
Motivation

• Real-Time system becomes more computation-demanding
 • Hardware: Multi-core
 • Meet the rapidly increasing high performance computing requirements.
 • Lower the power consumption.

• Many modern multi-cores adopt heterogeneous architectures
 • CPU+DSP: Zynq-7000, OMAP1/OMAP2, etc.
 • CPU+GPU: Tegra processors
Modeling Typed Parallel Tasks

• Directed Acyclic Graph (DAG)
 • Model intra-task parallelism structures
 • Vertex: presents each task, $c(v)$ denotes the worst-case execution time (WCET) of each vertex v.
 • Edge: presents dependency between vertices
 • Type: S is the set of core types and for each $s \in S$ there are M_s cores of this type ($M_s \geq 1$). $\gamma(s)$ represents vertex v must be executed on cores of type s.
 • $\text{len}(G)$ denotes the longest path of G
 • $\text{len}_s(\pi)$ denotes the total workload of π typed with s
 • $\text{vol}(G)$ denotes the total workload of G
 • $\text{vol}_s(G)$ denotes the total workload of G with type s
Schedulability Analysis

- OLD-B: $R(G) \leq \left(1 - \frac{1}{\max_{s \in S}(M_s)}\right)\text{len}(G) + \sum_{s \in S} \frac{\text{vol}_s(G)}{M_s}$
 - Pessimistic and Non-self-sustainable
 - Self-sustainable property: the increasing of M_s would not increase $R(G)$

- NEW-B-1: $R(G) \leq \text{len}(\tilde{G}) + \sum_{s \in S} \frac{\text{vol}_s(G)}{M_s}$
 - \tilde{G} is the scaled graph of G. The scaled graph \tilde{G} of G has the same topology (V and E) and type function γ as G, but a different weight function \tilde{c}: $\forall v \in V: \tilde{c}(v) = c(v) \times \left(1 - \frac{1}{M_{\gamma(v)}}\right)$.
 - More precise than OLD-B and self-sustainable with each M_s, but still pessimistic

- NEW-B-2: $R(G) = \max_{\pi \in G}\{\tilde{R}(\pi)\}$
 - $\tilde{R}(\pi) = \text{len}(\pi) + \sum_{s \in \pi} \frac{\sum_{v \in \text{ivs}(\pi,s)} c(v)}{M_s}$
 - For each vertex $v \in V$, $\text{par}(v)$ denotes the set of vertices that are in type $\gamma(v)$ but neither ancestors nor descendants of v. Let π be a critical path, $\text{ivs}(\pi,s)$ is defined as: $\text{ivs}(\pi,s) = \bigcup_{v \in \pi \land \gamma(v) = s} \text{par}(v)$.
 - The problem of computing $\max_{\pi \in G}\{\tilde{R}(\pi)\}$ is strongly NP-hard.
 - If the number of types is a constant, we proposed an algorithm to compute $\max_{\pi \in G}\{\tilde{R}(\pi)\}$ with complexity of $O(|V|^{|s|+2})$.
Evaluation

• Using normalized WCRT: NEW-B-1/OLD-B and NEW-B-2/OLD-B

• Randomly Generated Tasks
 • Different total utilization U
 • Different probability to number of tasks $|V|$
 • Different probability to number of edges pr
 • Different probability to number of types $|S|$