Joint Network and Computing Resource Scheduling for Wireless Networked Control Systems

Peng Wu¹ Chenchen Fu² Minming Li² Yingchao Zhao³ Jason Xue² Song Han¹

¹University of Connecticut

²City University of Hong Kong

³Hong Kong Caritas Institute of Higher Education

Wireless Networked Control systems

WNCSs enable wireless networked control, actuating, and feedback

 great advantages in applications such as industrial monitoring and control [1], building automation [2], manufacturing [3], etc.

Structure of WNCSs from the perspective of Control Community

- Multiple control loops
- Shared CPU
- Shared communication medium
- Designated end-to-end timing requirement
- Strict execution order
 - Sensing
 - Computing
 - Actuating

Joint Resource Scheduling (JRS) Model

We observe one control loop of WNCSs from the perspective of real-time system

The joint task model is defined as:

$$\tau: \vec{s}(h) \to \vec{c}(m) \to \vec{a}(k)$$

- Sensing segment \vec{s} uses network resource
- Computing segment \vec{c} uses CPU resource
- Actuating segment \vec{a} uses network resource where we use h, m and k to represent the execution/transmission time of the three segments, respectively.

Assumption: Unit size of network and computing resource slices are the same. The wireless network has only one channel and the CPU is a preemptive uniprocessor. 3

Joint Scheduling Problem Formulation

Joint Network and Computing Resource Scheduling (JNCRS) Problem:

• Given a set of real-time joint tasks $\{\tau_1, \tau_2, ..., \tau_n\}$. Each task τ_i is associated with a release time r_i , a deadline d_i , and consists of three consecutive and dependent segments. The objective of the JNCRS problem is to find a feasible schedule so that the deadlines of all real-time tasks are met.

Divide the **JNCRS problem** into 4 subproblems based on the size of the execution time of each segment.

Task Model	Complexity or Solution
$\tau: \ \vec{s}(1) \to \vec{c}(1) \to \vec{a}(1)$	Polynomial-time solvable (Alg.1)
$\tau: \ \vec{s}(1) \to \vec{c}(m > 1) \to \vec{a}(1)$	Polynomial-time solvable (Alg.2)
$\tau: \ \vec{s}(1) \to \vec{c}(m > 0) \to \vec{a}(1)$	Unknown
$\tau: \vec{s}(h) \to \vec{c}(m) \to \vec{a}(k)$	NP-hard

Joint Scheduling Algorithms (Alg.1 and Alg.2)

Alg. 1: Unit-Size Joint Resource Scheduling (JRS-US) algorithm

■ The key idea is to identify all the intervals with network resource utilization of 100% and modify the deadline of a sensing/actuating segment if its deadline is within but its release time is outside that interval.

After the deadline modifications, Earliest Deadline First (EDF) can be used.

Alg. 2: Joint Resource Scheduling (JRS-US) algorithm under 1-m-1 (m>1)

- Modify deadline as Alg. 1, but also needs to modify release time.
- Design Conditional/definite release time/deadline for the network segment, due to different preemption cases of computing segment.

Future Work

- Continue study the remaining subproblems and design the efficient scheduling algorithms on
 - 1-m-1 model (m>0)
 - general model
- Evaluate effectiveness and practicability of the proposed algorithms in real-life systems by implementing them on our WNCS testbed.
- Relax the assumptions on
 - number of wireless network channels and number of CPU cores
 - network topology (sensors, actuators, controllers)