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Message from the Program Chairs 
 
It is our pleasure to welcome you to the 6th International Workshop on Mixed Criticality 
Systems (WMC) at the Real-Time Systems Symposium (RTSS) in Nashville, Tennessee, USA on 
11th December 2018. 
 
The purpose of WMC is to share new ideas, experiences and information about research and 
development of mixed-criticality real-time systems. The workshop aims to bring together 
researchers working in fields relating to real-time systems with a focus on the challenges 
brought about by the integration of mixed-criticality applications onto single-core, multicore 
and many-core architectures. These challenges are cross-cutting. To advance rapidly, closer 
interaction is needed between the sub-communities involved in real-time scheduling, real-
time operating systems / runtime environments, and timing analysis. This workshop aims to 
promote understanding of the fundamental problems that affect Mixed-Criticality Systems 
(MCS) at all levels in the software / hardware stack and crucially the interfaces between them. 
 
WMC 2018 for the first time accepts the 2-page Journal-Never-Presented (JNP) papers. The 
JNP papers present relatively new journal papers in the scope of MCS that were accepted by 
major journals but not previously presented anywhere. This allows work that is relevant to 
the MCS community but might not be widely known to have the opportunity to be presented 
and discussed at the workshop. 
 
For this sixth edition of the workshop, a total of 7 submissions were received. The review 
process involved 19 Program Committee members, with each submission receiving at least 5 
reviews. We decided to accept 5 papers for presentation at the workshop, including 4 regular 
unpublished papers and 1 Journal-Never-Presented papers. We sincerely thank all the 
Program Committee members for their time and effort in the review process. 
 
WMC 2018 would not be possible without the hard work of a number of people involved in 
the organization of RTSS 2018, including Robert I. Davis, Isabelle Puaut, Aniruddha Gokhale 
and Linda Buss. In particular, we would like to thank the RTSS 2018 workshops chair Liliana 
Cucu-Grosjean for her excellent organization and great support of the overall workshops 
program. We also thank the WMC Steering Committee for their guidance and suggestions 
throughout the preparation of WMC 2018. 
 
Finally, we would like to thank all of the authors who submitted their work to WMC 2018, as 
well as all the keynote and invited talk speakers; without them, this workshop would not be 
possible. We wish you an interesting and exciting workshop and an enjoyable stay in 
Nashville, Tennessee, USA. 
 
Zhishan Guo (University of Central Florida, USA) 
Jing Li (New Jersey Institute of Technology, USA) 
WMC 2018 Program Chairs 
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WMC 2018 Keynote 
 

 

Sanjoy Baruah 
 

Mixed-Criticality Scheduling Theory : 
Scope, Promise and Limitations 

 
 

BIO: Dr. Sanjoy Baruah is the professor at Washington University in St. Louis in September 2017. He was 
previously at the University of North Carolina at Chapel Hill (1999-2017) and the University of Vermont (1993-
1999). He received his Ph.D. degrees from The University of Texas at Austin in 1993. His research interests and 
activities are in real-time and safety-critical system design, scheduling theory, resource allocation and sharing 
in distributed computing environments, and algorithm design and analysis. He is a Fellow of the IEEE, and the 
recipient of the 2014 Outstanding Technical Contributions and Leadership Award of the IEEE Technical 
Committee on Real-Time Systems. 
 
ABSTRACT: Mixed-criticality Scheduling Theory arose in response to a very real and pressing need in safety-
critical systems: how does one reconcile the goals of effective pre-run-time verification and resource-efficient 
implementation, despite the significant nondeterminism and uncertainty in the operating environments of 
many such systems?   The theory has, over the past decade, evolved into an intellectually rich and exciting field 
of study; however, there is some concern that the developed theory does not match well with the 
requirements of actual system design.  In this presentation I will attempt to explain (and justify) the dominant 
trends in mixed-criticality scheduling theory research.  I will seek to characterize the problems in systems 
design and implementation that the developed theory is able to address, as well as the kinds of problems that 
it is cannot currently deal with, and will suggest some possible extensions to the theory that may broaden the 
scope of its applicability. 
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WMC 2018 invited talks 

 
 

Mohamed Hassan (University of Guelph, Canada) 
Title : MPSoCs for Mixed-Criticality Systems: Challenges and Opportunities 
 
ABSTRACT. Real-time embedded systems are becoming ubiquitous in many emerging domains such as 
autonomous vehicles, healthcare, and drones. These domains pose two new major aspects that did not 
traditionally exist in real-time systems: 1) they are both computational and data intensive, and 2) they execute 
tasks with a mixed-criticality nature. Multiple-Processor Systems-on-Chip (MPSoCs) provide appealing 
platforms to address both aspects. Nonetheless, they come with their own challenges. In this talk, we discuss 
some of the opportunities that MPSoCs offer as well as their associated challenges. 
BIO. Mohamed Hassan is an Assistant Professor at University of Guelph. Before Joining UoG, he worked as a 
SoC R&D engineer at Intel. He obtained his PhD from University of Waterloo in 2017 and MSc. From Cairo 
University in 2012. His research interests include real-time embedded systems, computer architecture, 
hardware validation and security. 
 
Geoffrey Nelissen (CISTER ISEP, Portugal) 
Title : Mixed-Criticality Systems: What Is it Really? 
 
ABSTRACT. The talk will discuss some understandings on what can really be modeled with the Mixed-Criticality 
Systems model and how can we define a new terminology that is less confrontational/misleading when talking 
to industry. 
BIO. Geoffrey Nelissen earned his MSc degree in Electrical Engineering at Université Libre de Bruxelles (ULB), 
Belgium in 2008. Then, he worked during four years as a PhD student in the PARTS research unit of ULB. In 
2012, he received his PhD degree under the supervision of Professors Joël Goossens and Dragomir Milojevic, 
on the topic "Efficient Optimal Multiprocessor Scheduling Algorithms for Real-Time Systems". He is currently 
working at CISTER as a researcher scientist in the area of multiprocessor real-time scheduling theory. His 
research interests include real-time scheduling theory, real-time operating systems and multi-
processors/multi-cores architectures. 
 
Sathish Gopalakrishnan (University of British Columbia, Canada) 
Title : Mixed-Criticality Systems: Safety & Statistical Guarantees 
 
ABSTRACT. The talk will discuss whether we can provide statistical guarantees to ensure safety to Mixed-
Criticality Systems and what are the existing techniques and challenges toward this goal. 
BIO. Sathish Gopalakrishnan is an Associate Professor in the University of British Columbia's Electrical & 
Computer Engineering Department. He obtained a PhD in Computer Science and an MS in Applied 
Mathematics from the University of Illinois at Urbana-Champaign. Sathish's research interests span the design, 
modeling and analysis of computing systems. His work has been recognized with Best Paper Awards (IEEE RTSS 
2004, IEEE Transactions on Industrial Informatics 2009). Sathish chaired the Vancouver Chapter of the IEEE 
Computer Society, is the Regional Coordinator for IEEE Regions 6 and 7 on the Computer Society's Geographic 
Unit Operations Committee. 
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Supporting Critical Modes in AirTight
J. Harbin, D. Griffin, A. Burns, I. Bate, R.I. Davis and L.S. Indrusiak

Department of Computer Science, University of York, UK.

Abstract—The AirTight protocol supports mixed criticality
wireless traffic and temporal guarantees based on defined fault
models. In some systems, following a catastrophic failure, it is
necessary to communicate crucial data away from the site of
the failure in order to better understand (post-hoc) the reasons
why it occurred. To support this action it is necessary for a
mode change request to be propagated to all the non-failed
nodes in the system, and for these nodes to switch their
behaviour so that the crucial data is given high priority in its
use of the wireless network. This paper explains how AirTight
can support such a critical mode change. A uni-cast protocol is
utilised to flood the system with mode change messages, each
node then locally prioritizes its use of the available bandwidth
to support the defined UC (Ultra-Criticality) packet flows. An
aircraft engine control scenario is used to motivate the
requirements for the mode change protocol. Protocol-accurate
simulations are then used to illustrate and evaluate the
approach.

I. INTRODUCTION

AirTight [2] is a wireless protocol (built upon the physical
and MAC layers of IEEE 802.15.4) that supports
mixed-criticality real-time traffic between computational
nodes. With any wireless communication it is not realistic to
assume fault-free behaviour. Rather, as in other
considerations of fault tolerance, we require that certain
levels of performance are delivered when the likelihood and
severity of faults is bounded by what is referred to as a fault
model. We assume that the physical layer of the protocol
incorporates the usual methods of increasing resilience (for
example spectrum spreading), AirTight therefore supports
analysis that models the faults that manifest themselves as
unacknowledged frame transmissions at the MAC layer.

Within AirTight the run-time behaviour is controlled via
two-level scheduling. A system-wide slot table determines
when each node can transmit and when each node must be
open to receive (and on which channel). Local to each node
is a fixed-priority scheduler that determines which packets to
transmit when it has a transmission slot. An application
packet (or flow) consists of a small sequence of frames; and
it is assigned a criticality level [3]. As frames are transmitted
each node keeps a count of the number of its transmission
failures. When this number is below a defined limit, frames
are simply resent. But if this limit is reached, a local
critically mode change is made at the node and only the
more critical packets are transmitted.

With a system defined to have two criticality levels, HI
and LO, response-time analysis is used to verify that all
packet deadlines are met if a lower threshold on the number
of faults is satisfied. If this threshold is violated but a higher
threshold is satisfied then the analysis will establish that all

HI-critical packets are delivered by their deadlines. When
there are currently no further frames to transmit then the
node’s failure count is re-set to zero.

In this paper we extend the scope for AirTight by defining
the required behaviour of each node when there are more
faults than the higher threshold specified, or when there is a
functional mode change to the entire system brought about
by a severe failure or attack. Although AirTight is a uni-cast
protocol it uses a flooding scheme to communicate the
requirement for this mode change to all non-failed nodes in
the system. Each of these nodes then switches its local
criticality mode to Ultra-Critical, UC. This will impact the
set of local tasks that are executed and on the set of packets
that are communicated. Within the context of the
experienced failure, these tasks and packets may be ‘new’
(i.e. only occur in this UC mode), be existing HI-criticality
tasks/packets or even be LO-criticality tasks/packets that
have increased significance in the new mode.

II. ENGINE MALFUNCTION USE CASE

An aircraft engine is a harsh environment for electronics
and wireless communication in that there are a lot of moving
mechanical parts generating both interference and attenuating
radio signals. Nevertheless, wireless sensors have two
distinct advantages: (1) the sensors can be put deep inside
the engine where it is not feasible to have cabling; and (2) it
removes the weight and maintenance of cabling. The
difficulty of maintenance may also mean that the designer
may want to fit a number of replicas so replacement is not
necessary. Current engines have a number of sensors. With a
shift towards more intelligent control and monitoring, this
number will grow. Internal to the engine there are failures
that may affect the wireless communications but also may
affect the requirements of the system. For example, in the
case of a shaft break, there will be a significant amount of
mechanical damage, which may cause nodes to fail and may
lead to large pieces of material (including metal) being in
unanticipated positions.

External to the engine there are a number of controlled
interference sources, e.g. from the rest of the aircraft, and
un-controlled interference sources, e.g. high-intensity
radiated fields including lightning, mobile phones, laptops
etc. This leads to complex fault behaviour that cannot be
fully defined at design time. We therefore utilise a collection
of fault models (one per criticality level) that are, in
themselves, bounded. Finally, a number of parts of the
overall aircraft system (and logistical support equipment on
the ground) may want to use wireless communications and

7



as such the aircraft engine should be designed to share the
same parts of the spectrum especially as the whole aircraft
could have hundreds if not thousands of sensors.

A good example of the potential deployment of a wireless
communication media is within an aircraft engine for the
purposes of active health monitoring [4]. Figure 1 shows the
communication graph (black lines) for a 25-node wireless
network inspired by a possible engine monitoring system; it
is clear that the topology of this example is a 5-node
subsystem repeated 5 times. Actual data flows are shown as
blue arrows. While this may not entirely represent how
aircraft engines will ultimately use wireless communications,
it is representative. An aircraft engine has a limited amount
of space available to mount wireless sensors. In these places
there are opportunities to use energy harvesting, e.g. using
vibration, to power the nodes. Therefore in these locations
there will be a number of smart sensors (i.e. nodes)
monitoring different properties of the engine which will then
communicate with the rest of the engine via a signal
concentrator. Then, in one central location there will be the
traditional aircraft engine controls system (termed a FADEC
– Full Authority Digital Control system) that takes all the
signals, provides the primary control and monitoring, and
importantly provides the links to the Avionics Full-Duplex
Switched Ethernet (AFDX), i.e. the communications to the
rest of the aircraft.

We have used this 5-node subsystem to illustrate the
analysis associated with AirTight [2], and have validated this
analysis using a prototype network of 5 IEEE 802.15.4
compliant nodes. We also used a protocol-accurate in-house
simulator to evaluate AirTight’s performance and scalability
over the complete 25-node network. In total this network has
55 packet flows mapped to the 25 nodes; 25 of these flows
are defined to be of HI-criticality and 30 of LO-criticality.

In this paper we will use this example to illustrated how
AirTight supports the need for the criticality mode change
that would follow a significant mechanical failure, e.g. a
shaft break. A shaft break (or similar catastrophic failure) is
a very rare but not unknown event1. It is an interesting
example within the context of this work for two reasons.
Firstly, as the engine is effectively damaged beyond repair
then this event is rarely, and certainly not comprehensively,
investigated on a test rig which means if/when it does
happen for real there is a strong desire to get as much
engine data as possible into long-term storage for later
diagnosis and understanding. Secondly, from the point at
which the shaft break is detected, more complex control
algorithms are performed for a limited amount of time but
this extra functionality can be at the expense of some of the
“normal” functionality including that which is normally
HI-criticality. For these reasons, the shaft break mode change
can be modelled as follows: (i) the amount of data being
communicated from the smart sensors to long-term storage is

1An example is reported in https://www.nbcnews.com/storyline/airplane-
mode/faa-orders-a380-engine-inspections-after-midair-failure-emergency-
landing-n810341.

increased by a factor of, perhaps, 5; (ii) the time for which
the best-effort communications must be maintained is, for
example, 20 seconds; (iii) a percentage of nodes will be
randomly lost, e.g. 10%; (iv) as some nodes may be lost,
including those responsible for signal concentration and
communications to the airframe, some signals may need to
be sent to a number of sinks instead of just one; and (v) a
percentage of the “normal” HI-criticality messages will
become LO-criticality, e.g. 50%.
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Fig. 1. Communication Graph of a 25 node Health Monitoring System

III. OVERVIEW OF AIRTIGHT

We assume a distributed system of nodes that can each
perform any combination of executing tasks, producing/
consuming data from sensors/tasks, writing to actuators and
relaying data packets to and from other nodes. The AirTight
protocol has the following basic properties (most of them
inherited from the parent standard IEEE 802.15.4):

• Peer-to-peer packet-switching communication between
tasks/nodes is the normal use of the network. Packets
are sent as one or more frames. Each successful frame
transmission is always acknowledged by the receiver
through the transmission of a short ACK frame.

• Multi-hop routing is required due to the limited
transmission range of each node.

• Buffers exist on each node to store frames in transit
(the size of the buffers required on each node can be
determined during the offline schedulability analysis).

• Nodes have line power or local harvesting, so energy
efficiency/battery life is not a limiting concern.

• Multiple frequency bands (channels) are available in
IEEE 802.15.4 (up to 16 in the 2.4GHz band) but a
node can only use one channel at a time.

• Node communications are represented by two graphs: the
communications graph and the interference graph:

– The communications graph C: if there is an edge
from A ! B in C, then the two nodes can
communicate directly. This is required to be a
symmetric graph due to the necessity for an
acknowledgement to be returned to the sender, so
A ! B implies B ! A.

– The interference graph I: if there is an edge from
A ! B in I, then a transmission from A will prevent
B from receiving a frame from any node other than
A on that channel at that time.
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Note C is a subgraph of I: if A ! B is in C then it will also
be in I.

It is assumed that the packets to be communicated have tight
timing constraints (i.e. deadlines). We also require that the
system supports applications of different levels of criticality.

AirTight is designed to balance efficiency and flexibility.
At the system level, its media access control is table-driven,
but at the node level it uses criticality-aware priority-based
frame scheduling. The protocol is based around the repeated
application of the slot tables which, in time, define the
activities of each node – either transmission or reception on
that channel, or null meaning no usage. The slot (or
scheduling) table (ST) consists of a series of slots. Each slot
is assigned to a node and can be used by that node to send a
single data frame on a designated channel. The slot also
accommodates the ACK frame of the respective receiver.

At each node, local scheduling decisions are made to
manage the use of the node’s slot allocation. We employ a
fixed-priority scheme. A set of FIFO queues (buffers), one
per priority level, are used to hold the frames that need to be
transmitted. Each normal flow has a unique priority and
hence a specific buffer. The frames from the same flow are
stored in the buffer in FIFO order. Whenever the node has a
slot available, it transmits the first frame in the highest
priority non-empty buffer. If an ACK is received the frame is
removed from the buffer; if no ACK is received, then the
frame remains in the buffer and is a candidate for
re-transmission when the next available slot for that node
becomes available.

AirTight is thus a two level protocol. A collection of slot
tables defines the usage of the wireless media. Each slot in a
table defines whether the node can transmit in that slot (and on
which channel if more than one channel is used), or whether
it should listen in that slot (and on which channel), or whether
it is off-duty. The collection of tables reflects the properties
of the communication and interference graphs.

The fundamental time unit of AirTight is the duration (S)
of a slot – the time it takes to communicate a single frame
of data and receive an ACK for that frame. In our prototype
implementation [2] a slot length of 10ms has been achieved.
All parameters of the application, the communication media
and the environment (e.g. the usual Ti, Ci, Di, table length,
fault models, etc.) are expressed as an integer number of slot
times.

A schedulable AirTight network supporting mode changes
is intended to support the following requirements:

• If there are no faults experienced by the system then all
packets will meet their deadlines.

• If the faults experienced by the system are no worse than
that implied by the LO-criticality fault model then all
packets will meet their deadlines. This is defined to be
the LO-criticality mode.

• If the faults experienced by the system are no worse
than that implied by the HI-criticality fault model then
all HI-criticality packets will meet their deadlines. This
is defined to be the HI-criticality mode.

• If the faults experienced by the system are worse than that
implied by the HI-criticality fault model then we assume
that this level of faults implies a permanent degradation
to the network and/or the control system it is supporting.
This is defined to be the Ultra-Critical (UC) mode, and
is the focus of this paper.

For this mixed-criticality behaviour response-time analysis
has been developed [2] that can be used to verify an
application. This analysis is itself based upon the approach
developed for mixed criticality task scheduling [1]; it is not
repeated here due to space limitations.

The application’s characteristics, together with the per
channel interference and communication graphs, and the
analysis developed for AirTight, are the inputs required to
construct the per channel slot tables. The simplest slot table
is one that has a single slot per node (with some slots being
used by more than one node if they are not linked in the
interference graph). More complex slot tables can be
constructed, via search techniques such as the use of Genetic
Algorithms that also take task placement and routing into
account. The use of these techniques to construct optimal, or
near optimal, slot tables forms part of future work and is not
considered further here.

IV. SUPPORTING CRITICAL MODE CHANGES

For ease of presentation we will assume that our system is
multi-hop and multi-domain, but single channel.

In the LO- or HI-criticality (i.e. not UC) mode of
operations each node (ni) will have a set of other nodes that
it sends messages to. Let this set be represented by Pi (for
partners). Clearly each member of Pi is linked to ni in the
communication graph, C. Let the larger set of nodes that ni

could communicate with be denoted by P+
i

. So P+
i

contains
all the partners of ni in C.

A mode change is triggered within ni by either an
application task that has identified a severe physical failure,
or attack, or the AirTight protocol stack having monitored
more frame communication failures than can be tolerated in
the HI-criticality mode; let this value be represented by
GHI . Node ni also undergoes a mode change if it receives
an authenticated ‘mode-change’ packet from another node.
This packet is then passed on to all members of P+

i
.

In the protocol described in this paper, the slot table does
not change when the node switches to the UC mode. It is
possible to envisage a protocol in which a different slot table
becomes more appropriate in the UC mode. But to
coordinate the simultaneous switching of all nodes to a new
table is not without considerable difficulty. We therefore
explore in this work the expressive power of an approach
that retains the same slot table in this UC mode. This has
the advantage that the mode change can be communicated
across the system without the need for coordination. Of
course the initial (offline) construction of the slot table could
take into account the needs of the UC mode. For example, a
node that does not transmit any packets under normal
operation, and hence does not require a slot in the table,
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could be assigned a slot so that it could contribute to the
communication of the critical mode change request.

Having recognised the need for a system-wide mode change
the node follows the following (initial phase) protocol:

• A single ‘mode-change’ packet of the highest local
priority is queued (buffered) ready to be sent to all
members of P+

i
. A distribution queue is initialised,

containing the members of P+
i

. This distribution queue
may optionally be sorted in such a way as to direct the
mode change message more quickly in a specific
direction.

• When transmitting the packet, its next-hop destination is
set to the node at the head of the distribution queue. If
the transmission is acknowledged successfully, the entry
at the head of the distribution queue is removed. If the
distribution queue is empty, then all peers have been
informed of the mode change, and the mode change
packet is deleted from its buffer.

• If a frame from one of these packets fails to be
acknowledged then the associated packet is not removed
from the buffer – this is the usual behaviour for
AirTight.

• If any frame fails to be sent to the same next-hop
destination GHI times (determined by the lack of an
acknowledgement), the next-hop destination is removed
from the distribution queue – the wireless link or
designated node is assumed to be permanently broken
as a result of the primary cause of the mode change.

• If node ni receives a ‘mode-change’ packet from nj

while it is already distributing its mode change, then nj

is removed from the distribution queue (if it is currently
present) – clearly nj does not need to be informed of
the mode change.

The above flooding behaviour ensures that all non-failed nodes
receive the mode change request within a bounded period of
time. The analysis developed for AirTight [2] can be used to
compute this value for various system failure scenarios (an
example is provided in the Evaluation section).

In the second phase of the protocol the packets associated
with the UC mode are queued and transmitted. These packets
arise from:

• Packets that are only sent in the UC mode (perhaps
emanating from local tasks that only execute in the UC
mode).

• HI-criticality packets that are relevant to UC mode;
perhaps with an increased number of frames and/or
alternative routes.

• LO-criticality packets that are relevant to UC mode;
perhaps with an increased number of frames and/or
alternative routes.

• UC packets that originate from other nodes and are being
routed through this node.

All UC packets are transmitted with a priority higher than
those used for the usual HI-criticality and LO-critically traffic.
It is assumed that there is a finite number of packets to be

communicated within the UC mode. Perhaps a single packet
per originating task (i.e. these tasks are single-shot rather than
recurrent). Analysis can again be used to determine how long
it will take for such flows to reach their destinations when
there are parts of the network unavailable and faults being
experienced in the operational parts. Of course if the network
is partitioned then it will not be possible to deliver the UC
packets unless each partition has a relevant sink.

In the UC mode if there are currently no UC packets to
transmit then other HI-criticality packets can be sent. They
would have lower priority and hence would not interfere
with newly arrived UC packets (from either the host node or
being forwarded from other nodes); in general they would
not however be guaranteed to arrive before their deadlines. It
is assumed that LO-criticality packets, other than those
promoted to UC, are not transmitted in the UC mode.

V. EVALUATION

In this section, we consider the evaluation of the AirTight
ultra-criticality mode change via simulation. The simulator is a
discrete event simulation which allows analysis of the latencies
of packet flows, and transmission of the mode change. It allows
various faults to be defined with different probabilities and
locations affected, and individual nodes to be disabled during
simulation. The simulator also supports GUI visualisation of
the network in the process of simulation, indicating the status
of the nodes and their transmission buffers.

In order to evaluate the performance of the protocol, it is
important to consider the length of time taken to deliver the
UC mode change packet throughout the network, and the UC
packets. In addition, we can also assess the impact upon the
delivery rates and deadlines of the originally present HI-critical
and LO-critical packets.

The case study described in Section II and our previous
AirTight work [2] is used for the evaluation.

The slot table size used in this example case study is 30,
which is equivalent to 5 copies of the 6-slot table used in
[2]. The example topology is shown in Figure 1. The
topology has been modified from that used in [2] by the
addition of a number of additional links from nodes 9 to 4,
14 to 2, 19 to 1 and 24 to 3 (and since links are symmetric,
the reverse). This provides additional redundancy which is
required for providing fault tolerance in the event of a shaft
break failure disconnecting the original primary wireless link.

The fault case selected for the experimental case study
models a shaft break event occurring in the upper right
section of the topology. Its effects upon the network are as
illustrated in Figure 2. Nodes 8 and 6 fail permanently and
the link from node 9 to node 3 is permanently disconnected.
This loss of nodes fits with the requirements for the mode
change in the aircraft case, in that a small proportion of the
network nodes and connection links are lost as a result of
the failure. The transmission of the UC mode change is
initiated by node 5, which is informed of the shaft break by
a reading from one of its directly connected sensors. Upon
entering UC mode, nodes 5, 7, 10, 15 and 20 begin
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Fig. 2. Effects of the fault on the network (only the affected section shown)

executing a special processing task to gather logging data
about the shaft break failure. When this task completes,
these nodes transmit UC traffic – a data flow destined for
node 0 for the central module to convey the logged data.

In an emergency situation, it is important for the mode
change to be propagated across the network rapidly. The
time taken from the mode change event occurring to the
notification propagating across the network is considered in
this section. For each case, two metrics are used: the time
for the central node which has the wired link to the rest of
the network (identified as node 0) to be notified, and the
time for every node in the network to be notified. During the
flood propagation, the network is subject to different levels
of unrelated ‘normal’ faults, which manifest in a given
probability of a transmission failing. This probability is
uniform across the network, regardless of location. The
length of these fault bursts is increased in the series of
experiments performed.

The role of the simulator is to enable different scenarios
and fault models to be explored. Clearly this is much easier
to do with a simulator than a test-bed. One of the options
available with the simulator is to either simulate worst-case
fault behaviour, or to model fault arrivals via various
stochastic processes. Another choice is whether to assume
that each ‘link’ in the wireless network has dependent or
independent faults. For dependent behaviour a fault hits all
links at the same time - thus a routed message will perhaps
only suffer interference from faults on one of its hops. With
independent faults each hop could suffer this interference.

In the following examples of runs of the simulator we first
force the faults to occur at the ‘worst possible time’ but
assume faults are dependent. We then consider independent
but stochastically modeled faults.

Figure 3 demonstrates the increasing time taken for the
distribution of the mode change with increasing length of
transient faults. In all experiments time is measured in
numbers of slots.

For this experiment, the probability of transmitted data
packets being interfered with during the fault interval is
100% - it is assumed, for a worst case, that the transient
fault is completely destructive of ongoing traffic. Obviously,
the time taken to inform the central node 0 is lower than the
time taken to inform every node within the network. It is
notable that as the fault length is increased, several
discontinuities occur in which the elapsed time required to

propagate the mode change increases suddenly. These occur
as a result of the interaction between the periodic scheduling
table of AirTight and the fault definition.

In this experiment the distribution queues which control
the order for transmission of the mode change messages are
setup to direct the mode change messages towards the
central node 0. We found that this static property almost
halved the delivery time by comparison with an arbitrary
ordering of the distribution queues.
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Fig. 3. Timing with ordered queues

Assuming the mode change in this case study represents
an aircraft engine shaft break, a number of actions would be
required in order to respond to the mode change. Firstly, we
would assume that the network node detecting and signalling
the mode change would have to perform some processing to
determine the nature and effects of the fault that triggered
the mode change. Then it would communicate with its
coordinator node 0, transmitting some UC traffic in order to
transmit additional data via a multi-hop route. Also, the
other central nodes from each of the functional regions
illustrated in Figure 1 (nodes 10, 15 and 20) would, on
receiving the communicated mode change, determine the
control effects which are necessary and then transmit the
relevant data back to node 0. Given that these
communication data flows could involve instructions to other
engines that detail how they would have to respond to
compensate, this would be transmitted at the highest priority
after the mode change itself.

We now consider the latencies involved in the transmission
of this ultra-criticality (UC) data traffic. Five UC data flows
are activated, referred to as UC1 to UC5.

Figure 4 shows the latencies experienced for the 5 UC data
flows, indicating the time following their injection into the
network for the complete packets to reach their destination at
node 0. It is assumed in Figure 4 that the processing delay to
generate UC traffic is very short, effectively less than a single
table, so the packets are ready to be transmitted and present in
the buffer the next time the source node has a transmission slot.
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However, since UC flood packets (with the highest priority)
are present in the network, the generated UC data will not be
immediately transmitted.

The data series for the latency values is generated by
varying the transient fault length which occurs in the
network. These faults are assumed to begin immediately
upon the mode change, i.e. upon the injection of the UC
data traffic. The period of the faults is 500 slots, and the
faults are assumed to recur at the beginning of this interval,
network-wide (that is, all links in the network are affected
simultaneously).

Since flows UC1 and UC2 share a majority of the same
route, it is as expected that UC2 has a higher latency than
UC1. UC3 and UC4 have disjoint routes, so they do not
mutually interfere with each other, and achieve broadly the
same latency even though they have different injection times.
UC5 experiences the highest latencies since it may receive
interference from UC1 and UC2 (due to their requirement to
route via node 4).

We now show a result from simulating independent faults
that arrive stochastically. Clearly many different arrival
patterns can be experimented with. Faults hitting each link of
a routed message are likely to be rare; but should
nevertheless be investigated. In the following experiment
each link experiences a fault that arrives randomly between
the arrival of the UH mode change packet and that time plus
the table length. So this packet can potentially propagate
through the network without interference from faults but the
probability of it suffering multiple faults is not negligible.
Figure 5 shows a set of box plot results for increasing
durations of faults. For each fault duration 1000 simulations
were undertaken. Also shown on this figure is the analytical
upper bound calculated using the analysis reported in
previous work on AirTight [2]. Note, as expected, the
longest propagation time observed in the simulation
experiments is less than this bound.

Fig. 5. Latencies for UC Mode Change Message

VI. CONCLUSION

In a CPS system, a permanent fault may occur in such a way
as to require a different protocol response from those normally
assumed in the case of transient faults, such as retransmission
and alternative routes. Specifically, it may require a functional
mode change to be signalled throughout the network in order
to inform the entire system of an emergency situation, as well
as triggering the dropping of LO-criticality work. This paper
has demonstrated the modification of the AirTight protocol in
order to support these more challenging fault scenarios, with
only a minor modification of the logic for data distribution
at the highest priority level. The timing characteristics of this
mode change data and associated logging traffic have been
investigated via simulation to demonstrate its performance in
the presence of a variety of fault intensities.
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Abstract—In this work, we demonstrate an effective way of
applying formal methods to model and analyze mixed criticality
probabilistic real-time systems. By probabilistic real-time system,
we mean a real-time system in which the execution times of the
task jobs are described with probabilistic worst-case execution
time distributions. The criticality modes (high or low criticality)
are defined as events with the associated probability of occur-
rence. The probabilistic response time is used to characterize
the criticality mode of the jobs. Discrete Time Markov Chain is
built to represent job criticality modes and mode combinations.
We apply them to formally characterize and study the system
criticality behaviour at runtime as well as the probability of
the system entering high criticality mode. We also propose a
strategy to perform a resource efficient selective dropping of low
criticality jobs to improve the deadline miss probability of high
criticality jobs. This strategy is an improvement on classical case
of dropping all the low criticality jobs.

Index Terms—Probabilistic real-time system, Probabilistic
schedulability analysis, Mixed criticality, Formal methods, Dis-
crete Time Markov Chain.

I. INTRODUCTION

An increasingly important trend in developing real-time
systems is the integration of applications with different levels
of criticality. In a Mixed Criticality (MC) real-time system
there are tasks with two or more distinct criticality levels e.g.,
safety critical – HI-criticality, mission critical or low critical –
LO-criticality.

MC systems are defined to execute in a number of criticality
modes, each specifying a particular execution condition and
criticality. All the possible modes have to be characterized
and analyzed in order to guarantee the predictability of the
system; [4] presents a complete overview of the MC problem.

The gap between the actual execution behaviour and the
worst-case bounds may be significantly large. The MC schedul-
ing allows for less important tasks to execute in these gaps
under normal circumstances, and may be dropped in an
occasional situation where jobs of higher importance execute
beyond their estimated execution time.

Another parallel trend in the real-time systems is to use
probabilistic approaches. Probabilistic representations attempt
to describe the (epistemic) uncertainty within a system with
random variables [7]. In particular, the notion of probabilistic
Worst-Case Execution Time (pWCET) is currently emerg-
ing [6], [7]. This is motivated by traditional rigorous and
deterministic WCET analysis which may lead to pessimism,
since the occurrence of WCET happens under highly patho-
logical and extremely unlikely circumstances. The pWCET is
a probability distribution that upper bounds any task execution

time under every possible execution conditions [7]. In it, there
are multiple WCET thresholds and the probabilities associated
to them.

A real-time system with probabilistic parameters described
with random variables e.g. pWCETs, is called probabilistic
real-time system (pRTS). Characterizing certain pRTSs as hard
real-time or soft real-time is left to the discretion of the
developer because it depends on the required safety thresholds
of the application.

As demonstrated by [12], [18], MC problems can be
approached with probabilities to quantify and manage the
unlikely events such as high criticality modes. It is our belief
that a tighter coupling between MC and probabilistic frame-
works can end up into ‘smart’ schedulers for more efficient
utilization of the computational resource. This is because both,
probabilistic approaches and the mixed criticality models, are
motivated by safely minimizing the unused resources without
sabotaging the real-time system’s functioning. Obtaining a
feasible analysis of such a complex problem is possible
using formal methods. The formal MC probabilistic system
representation can be subject to rigorous model checking. The
validated probabilities extracted can be safely leveraged into
scheduling decisions.
Contributions. This paper is about describing and studying
the execution of MC jobs in pRTSs with the use of formal
methods. We distinguish and approach two problems. The
first problem is: P1 – to quantify the probability for the
system to execute in high criticality mode. We propose a
formal model with associated model checking to extract the
probability of the system taking paths through high criticality
modes. Formal methods are used to ensure that both the MC
models and the MC analysis with probabilities are correct
(validated).
The second problem is: P2 – to control the schedulability of
HI-criticality jobs based on their deadline miss probability.
Here, we reason a strategy to avoid dropping all the LO-
criticality jobs in the system, once the system is in high
criticality mode. The analysis which we develop selectively
decides which LO-criticality job to drop based on its effects
on HI-criticality jobs. With that, we are able to increase the
number of LO-criticality jobs which can execute with HI-
criticality jobs without jeopardizing their timing constraints.
Organization. Section II details the background of this paper
in terms of notations and preliminaries. Section III presents
the MC modeling and the formal methods used to model jobs
behaviour and criticality modes with probabilities. Section IV
illustrates the analysis we propose to calculate the probability
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of system entering high criticality mode configurations. Sec-
tion VI is for concluding remarks and future work.

A. Related work

In recent years, many attempts have been made in introduc-
ing probability to the modeling and schedulability analysis of
real-time systems.

Safety-critical applications have to account for the worst-
case behaviours that can possibly happen. The ’best’ modeling
of task parameters has to assure the coverage of any of the
execution conditions, worst-cases included [12]. LO-critical
applications rely on less constrained/demanding models. The
guarantees of their models are not as strict as those for safety
critical applications [23], [9].

Based upon pWCETs, execution time distributions, and/or
other possible parameters, probabilistic schedulability analy-
ses have been developed. They compute the probability of
missing a deadline and check if it is small enough for safety
requirements. Tia et al. [22] focus on unbalanced heavy loaded
system, with maximum utilization larger than 1 and much
smaller average utilization, and provide two methods for prob-
abilistic schedulability guarantees. Lehoczky [14] proposes the
first schedulability analysis of task systems with probabilistic
execution times. This work is further extended to specific
schedulers, such as Earliest Deadline First (EDF) in [24] and
under fixed priority policy in [10]. Statistical response-time
analysis, e.g., [16], can be further done to real-time embedded
systems based upon those probabilistic schedulability analysis.
Some works exist that apply discrete pWCET distribution to
schedulability analysis [8], [17], [21]. They rely on the con-
volution operation between distributions to find tasks discrete
probabilistic response time.

In the real-time systems community, some existing work in
MC scheduling considers the concept of graceful degradation
and proposes effective scheduling techniques, such as fluid-
based scheduling [2], utilization-based earliest deadline first
with virtual deadlines (EDF-VD) [15], putting restriction on
the asymptotic rate-based correctness notation [20], [1], and
involving mixed-criticality weakly hard constraints [11]. [18]
applies probability thresholds into MC schedulability condi-
tions; different schedulability conditions are defined from LO-
criticality to HI-criticality. [12], [18] represent the first works
to make use of probabilities for scheduling decisions.

II. NOTATIONS AND PRELIMINARIES

Here are some notions we make use of in this work.

A. Probability fundamentals

Given a continuous random variable X , the Probability
Density Function (PDF) fX (x) of X gives the probability
that a value extracted from X lies between a and b as:

Pr(a ≤ X ≤ b)
de f
=

∫ b
a fX (x)dx. In [0,+∞),

∫ ∞
0 fX (x)dx = 1. In

case of X being a discrete random variable, the PDF gives the

probability of an event x, fX (x)
de f
= Pr(X = x).

The Cumulative Distribution Function (CDF) is represented
as FX (x) and the Inverse Cumulative Distribution Function
(ICDF) as F ′

X (x).

The convolution of two continuous PDFs fX (x) and gY (y),
denoted by ⊗, refers to the summation of the random vari-
ables X and Y , given as: f ⊗g(z) =

∫ ∞
−∞ f (z)g(x− z)dz. The

convolution of more than two PDFs is represented as ⊗
i
Ci. In

our case, the random variable X represents the duration of
execution of a task or job.

Figure 1 illustrates an example of a random variable repre-
sented respectively with the PDF, the CDF and the ICDF.

t0

Probability

(a) PDF

t0

1
Probability

(b) CDF

t0

1
Probability

(c) ICDF

Fig. 1: PDF, CDF, and ICDF representations of a generic
random variable.

B. Probabilistic computational models

A periodic real-time application Γ has m tasks Γ =
{τ1,τ2, . . .τm}, m ∈N+ where N+ is the set of positive natural
numbers. A task τi is a tuple τi = (Ci,Ti,Di) where Ci is
the pWCET PDF, Ti is the period, Di is the deadline of the
task; Di ≤ Ti. Both Ti and Di are deterministic parameters
– single valued. Ci can be continuous or discrete worst-case
distribution.

Since the tasks are periodic, each j-th instance of a task τi

is a job Ji j. The job model is such that: Ji j = (Ci,ai j,di j, pi j),
j = 1,2,3.... Ji j arrives at time ai j = ( j − 1) · Ti; di j is the
job absolute deadline, di j = ai j +Di; pi j is the job priority, 0
being the highest priority i.e. if pi j < pkr then Ji j has higher
priority than Jkr. The hyperperiod, defined as the least common
multiple of the periods of all the tasks periods lcm(Ti), i =
1,2, ...,m is the scope of our analysis. In the hyperperiod there
are n jobs, with ni jobs for each task τi, n = ∑m

k=0 nk. The
real-time application can be represented with the n jobs, Γ =
{Ji j} i = 1,2, ...,m; j = 1,2, ...,n.

In pRTSs, the worst-case response time of a job is a random
variable, represented as R T .

Definition 1 (Job probabilistic worst-case response time). A

probabilistic worst-case response time pWCRT for a job Ji j,

denoted as R T i j, is a probabilistic distribution which upper

bounds every possible job response times due to concurrent

job interferences and preemptions during its execution. It is

represented with PDF as fR T i j
(x), CDF as FR T i j

(x) and ICDF

as F ′
R T i j

(x).

Definition 2 (Job deadline miss probability). The probability

that a job executes until a time greater than or equal to the

respective deadline is called deadline miss probability of the

job. For a job Ji j, it is denoted as Pdm
i j :

Pdm
i j = Pr(Ji j finishes executing after di j)

de f
=

∫ ∞

di j

fR T i j
dx. (1)

Assumptions: In a probabilistic framework, the schedula-
bility analysis refers to the process to obtain the pWCRTs and
deadline miss probabilities of the constituent jobs: a task set is
schedulable if the deadline miss probability of each of its tasks
is smaller than a certain required probability. The pWCRT
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can be a discrete or a continuous probability distribution. The
framework that we propose utilizes the given pWCRT of each
job in the system. This framework is valid irrespective of
whether the input (pWCET) or the output (pWCRT) distri-
butions of the analysis are discrete or continuous. Thanks
to the worst-case assumption of task execution scenarios,
pWCET of the tasks are independent [5]. All the execution
interferences during the job executions are considered in the
scheduling analysis and are represented by their pWCRT. It
is the probabilistic counterpart of the same assumption in the
deterministic context. In this work, the scheduling follows the
EDF preemptive policy which defines the job ordering by static
job-wise priorities pi j. It applies to single-core platforms, and
we assume the tasks’ jobs are suspended at the deadline.

III. MIXED CRITICALITY PROBLEM

In the two-criticality-level case, each job is designated as
being of either higher criticality HI-criticality or lower criti-
cality LO-criticality. The HI-criticality mode is where the job
executes in highly critical (and more demanding) conditions
– critical function or fault recovery; a LO-criticality mode is
the nominal working condition for the job where it executes
in normal conditions. Having a higher criticality is regarded
as giving more execution time to the task.

A HI-criticality job JHI
i j is the tuple: JHI

i j

de f
=

(Ci,ai j,di j, pi j, li j,χi j). Ci, ai j, pi j and di j are as defined
earlier. χi j is the job criticality level defined for a job
Ji j [3] which can take two values at runtime: HI and LO;
χi j = {HI,LO}. li j ≤ Di describes the threshold with which
we define the job criticality mode.

A LO-criticality job JLO
kr is the tuple: JLO

kr

de f
=

(Ck,akr,dkr, pkr,χkr). χkr for a LO-criticality job can take only
one value, χkr = {LO}.

For the jobs, the criticality level of its task is inherited
e.g., for Ji j and Jik have the same criticality level as of the
task τi level. However, the actual criticality mode of the jobs
can change at runtime depending on their scheduling, in turn
affecting the system criticality mode.

The real-time application is formed from these tasks
which is partitioned between their HI-criticality jobs and LO-
criticality jobs. ΓHI = {JHI

i j } is the set of high criticality jobs
with nHI number of HI-criticality jobs; ΓLO = {JLO

kr } is the set
of LO-criticality jobs with nLO the number of LO-criticality
jobs; Γ = ΓHI ∪ΓLO and n is the total number of jobs in the
hyperperiod, n = nHI + nLO. With tasks, it is mHI the number
of HI-criticality tasks, and mLO the number of LO-criticality
tasks; mHI +mLO = m.

Classically, the definition of system criticality is such that:
the system enters high criticality mode whenever at least one
of the HI-criticality job enters high criticality mode [3]. We
propose the following more generic and flexible definition of
system criticality.

Definition 3 ((k,n) System criticality). The system criticality

level χ is high (HI) if at least kHI out of nHI HI-criticality jobs

enter high criticality mode.

Using the above definition for system criticality allows
the flexibility to choose the value of kHI depending on the

system. This also implies that a kHI greater than 1 is less
pessimistic than the classical definition of system criticality.
Because of the nature of the pRTSs, the event of the system
entering high criticality mode is not deterministically known
anymore: there exists a probability of the system entering the
high criticality mode. This is why we need to use reliable
probabilistic analysis tools to analyze such a system.

Criticality threshold: We define the job criticality mode using
a threshold li j ≤Di which applies to the job pWCRT. As shown
in Figure 2(a) with HI- and LO-criticality regions, if the job
finishing time is in [li j,∞), the job is considered to execute
in high criticality mode, otherwise the job executes in low
criticality mode, [0, li j).

li j

LO HI

Probability

0

1

t

(a) Continuous

WCETli j

LO HI

Probability

0

1

t

(b) Discrete

Fig. 2: pWCRT of job Ji j in its ICDF in (a) continuous and (b)
discrete form . High and low criticality regions are separated
by li j. Low and High criticality zones denoted as LO and HI.

The probability PHI
i j that a job Ji j executes in the high

criticality mode is:

PHI
i j

de f
=

∫ ∞

li j

fR T i j
(x)dx. (2)

If the pWCRT is discrete as shown in Figure 2(b) with

WCET as the maximum possible execution time, PHI
i j

de f
=

∑WCET
x≥li j

fR T i j
(x).

The MC definitions and modelling we propose, is slightly
different than the classical ones with multiple WCET thresh-
olds [23], [12]. With the MC modeling via pWCRT, it is
possible to distinguish the job behaviour at runtime, which,
otherwise impossible to do with pWCETs and WCET thresh-
olds. This allows to relate the system criticality to the actual
job execution which includes the job waiting time due to
preemptions and postponements. Nonetheless, the MC analysis
we propose is general enough to apply to WCET thresholds
also. Note that in the latter case, every job of the same task
would have the same criticality mode.

Discrete Time Markov Chain: We assume that a task set is
given, it is scheduled using EDF scheduling policy, and the
pWCRT for each job in the hyperperiod is known. The system
criticality modes are modelled as a Discrete Time Markov
Chain (DTMC). The choice of DTMC makes it possible to
simply arrange the readily available probabilities from the
schedulability analysis. System depiction as states replicates
the switching the real-time system between high the low
criticality modes. The transitions between those states can be
labelled with the probability of it being chosen. Moreover,
DTMC allows modelling of a probabilistically distributed
system subject to its mathematical foundation. This is unlike a
linear system, like Petri net or automata, where discrete actions
form a complex explorable tree. DTMC is subject to formal
model checking in which path properties or the probability of
reaching certain states can be formally checked. As we will
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see, this is useful to know the probability of a path taken by
the system. A DTMC M is defined as a set of states S and
state transitions given by a Q-matrix Q, M = (S,Q) [19]. In
the following, we give the basics to build DTMC for mode
changes in MC pRTSs and the probabilistic properties which
are formally verified with PRISM Model Checker [13]. It
should be noted that property verification for a probabilistic
system returns a probability of that property being true.
System criticality mode modeling: We present here the
DTMC model for problem P1, Mcrit = (Scrit ,Qcrit);

To build Mcrit it is required to consider only the HI-criticality
jobs in this DTMC. It is because only HI-criticality jobs
contribute to decide the system criticality. The contribution
of the LO-criticality jobs is included in the pWCRTs of
the HI-criticality jobs. For each job JHI

i j ∈ ΓHI, the set of
states Si j = {JHI

i j ,HCi j,LCi j} is defined. State HCi j represents
execution of JHI

i j in high criticality mode ([li j,∞)) and state LCi j

represents execution of JHI
i j in low criticality mode ([0, li j)).

The state JHI
i j is simply a passing state used for the ease of

modeling and representation; it has no contribution to the
analysis. The set of states Scrit for the whole system is defined
as an union of the sets Si j, ∀i, j such that job Ji j is a HI-

criticality job: Scrit de f
= (

⋃
i, j Si j) : Ji j ∈ ΓHI.

Scrit is ordered in the increasing priorities of the jobs that it
contains, for the ease of formalization and presentation. Any
other ordering would be possible, since the DTMC does not
represent the scheduling but only the criticality configurations.
The set of states and transitions in Mcrit is shown in Figure 3
for an example task set Γ. There are unidirectional transitions
JHI

i j − > HCi j, JHI
i j − > LCi j, HCi j− > Jab, LCi j− > Jab; such

that pab > pi j and the priority difference |pi j − pab| is mini-
mum ∀i, j,a,b, Jab,Ji j ∈ ΓHI. The initial state is a Jab such that
pab is minimum and Jab ∈ ΓHI.
The state transitions are labelled such that the sum of the
probabilities of all the outgoing transitions is equal to one.
Each transition emanating from a state Ji j to HCi j is labelled
with the probability PHI

i j from Equation (2). This implies, each
transition emanating from a state Ji j to LCi j is labelled with
the probability 1−PHI

i j . The transition matrix Qcrit defined as:
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

J11 HC11 LC11 . . . JmHI nHI HCmHI nHI LCmHI nHI

J11 0 P11 1−P11 . . . 0 0 0
HC11 0 0 0 . . . 0 0 0
LC11 0 0 0 . . . 0 0 0
J12 0 0 0 . . . 0 0 0

HC12 0 0 0 . . . 1 0 0
LC12 0 0 0 . . . 1 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
JmHI nHI 0 0 0 . . . 0 PmHI nHI 1−PmHI nHI

HCmHI nHI 0 0 0 . . . 0 0 0

LCmHI nHI 0 0 0 . . . 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3)

To refer to an element of the matrix, Qcrit(Stater,Statec) gives
the probability of transition from a state Stater in the row to a
state Statec in the column, e.g. probability of transition from
J11 to HC11 is referred as Qcrit(J11,HC11), equal to P11.

As we see, the DTMC models construction is quite straight-
forward without involving any mathematical operations like
convolution or upper-bounding of any kind. It is simply
arranging the probabilities obtained from the schedulability
analysis into formally verifiable DTMC structure. Thus, the
safety of this construction comes the safety of the given
schedulability analysis used to obtain the pWCRTs.

J11 J12 JmHInHI

S11

P11 P12 PmHInHI

1−P11 1−P12 1−PmHInHI

1

1

1

1

S12 SmHInLO

HC11 HC12 HCmHInLO

LC11 LC12 LCmHInLO

Fig. 3: System DTMC model Mcrit , assuming
J11,J12, . . . ,JmHInHI ∈ ΓHI and such that p11 ≤ p12 ≤ . . . ≤
pmHInHI .

IV. CRITICALITY ANALYSIS

In this section, we detail our proposition to tackle the prob-
lem P1. With DTMC Mcrit =(Scrit ,Qcrit) Matrix (3), we define
the meaning of system criticality from the criticality levels
of the jobs. Then, we quantify the probability of the system
criticality by exploring Mcrit with formal model checking. We
name this analysis ‘criticality analysis’ (crit). The definition of
system criticality level translates into paths within the DTMC
taken by the system through certain states. Each path has a
probability of being taken at runtime. This is a probability for
the system entering the high criticality mode.

A path D in Mcrit represents the trace of the jobs tak-
ing high or low criticality modes at runtime. It is an or-

dered set of states D
de f
= [State1,State2, ...StatenHI ], such that

Qcrit(Statek,Statek+1)> 0 i.e. there exists a transition between
two consecutive states. The probability of occurrence of the
path D is Pr(D), and it is computed by performing model
checking on DTMC using the property: ‘the maximum proba-
bility that the next state is State1 AND the next to next state
is State2 AND the next to next to next...’. This property is
formally written as: Pmax =?[Xstate = State1 & XXXstate =
State2 &XXXXXstate = State3 . . .]. It should be noted that for
each state, the next (X) is considered one from the initial state.
Doing so defines a model checking property which navigates
through the states.

For Mcrit , there are 2nHI
possible paths which

start from the initial state. Examples of a path
are: D1 = [J11,HC11,J12,LC12 . . . ,LC

mHInHI ], D2 =
[J11,LC11,J12,HC12, . . . ,HC

mHInHI ].
(k,n) system criticality: Here, we recall the Definition 3 that
system is said to be in high criticality mode if at least kHI out
of nHI jobs enter high criticality mode. The system enters high
criticality mode in paths in which there is more than or equal
to kHI high criticality states HC. Such paths are denoted by
the superscript kn.

The q-th path Dkn
q has a probability of occurrence Pr(Dkn

q ).
There are qk paths which pass through a minimum of kHI high
criticality state. The exact value of qk follows the mathematics
of partitioning of numbers, which is left for future discussions.
Now, using Definition 3 system enters the critical region if,
Dkn

1 occurred OR Dkn
2 occurred OR . . . Dkn

qk
occurred. Thus, the

probability Pkn that the system enters high criticality region
is:

Pkn de f
= Pr(Dkn

1 )+ . . .+Pr(Dkn
qk
) =

qk

∑
q=0

Pr(Dkn
q ). (4)
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Ci Ti = Di χi

τ1 EXP(12) 3 {HI,LO}
τ2 EXP(13) 5 {HI,LO}
τ3 EXP(15) 6 LO
τ4 EXP(18) 10 LO
τ5 EXP(15) 10 LO
τ6 EXP(16) 15 LO

Fig. 4: Task set Γ param-
eters.

k
0 2 4 6 8 10 12 14 16

1E0
1E −07
1E −14
1E −21
1E −28
1E −35
1E −42
1E −49
1E −56
1E −63

Pkn

Fig. 5: Pkn from (k,n)
system criticality.

As special cases, (1,n) and (n,n) system criticality are the
two extremes of the (k,n) definition. (1,n) is to say that
the system is in high criticality mode if at least one HI-

criticality job is in high criticality mode: P1n de f
= Pr(D1n

1 ) +
. . .+ Pr(D1n

2n−1) = ∑2n−1
q=1 Pr(D1n

q ). Where D1n are the paths
taken through at least one high criticality states. (n,n) is to
say that the system criticality level as high whenever all the

HI-criticality jobs are in high criticality mode: Pnn de f
= Pr(Dnn

1 ).
Where Dnn

1 is the path taken through all the high criticality
states. This concludes the solution to problem P1.

Example 1. For this and the next section, we assume a task

set Γ as shown in Table 4. All the timing parameters are in unit

time and the Ci are exponential distributions with rate RAT E,

represented as EXP(RAT E). Γ is composed of 6 tasks with a

total of 31 jobs. Tasks τ1 and τ2 are HI-criticality tasks, and

tasks τ3, τ4, τ5 and τ6 are LO-criticality tasks. The threshold

li = 0.7Di. Γ is scheduled using preemptive EDF, the jobs are

aborted at the deadline. The hyperperiod of this task set is 30
time units; in it, there are a total of 16 HI-criticality jobs and

13 LO-criticality jobs executing. The task set Γ from Example 1

is applied to this methodology for different kHI.

Figure 6 shows the value of Pkn computed with Equation (4)

as the value of k changes from the (k,n) system criticality

definition Definition 3 . The probability that system enters HI-

mode: using (1,n) is 6.45E−03 and using (n,n) is 2.70E−62.

V. DEADLINE MISS ANALYSIS

This section focuses on the deadline miss probability of HI-
criticality jobs. The problem P2 can be stated as: the deadline
miss probability of a job Ji j should be less than or equal
to a given probability Pdm,max. Here Pdm,max is assumed to
be given and is the requirement to meet in order to guarantee
the probabilistic schedulability. Here, the focus is on the job
to reduce its probability of deadline miss 2 . Solving P2 is to
define a MC scheduling algorithm that is able to improve the
probability of deadline miss of jobs of choice.

Usually, MC scheduling directs that when the system is in
high criticality mode, all the LO-criticality jobs are dropped to
ensure the timing requirements of the remaining HI-criticality
jobs [3]. Instead, the scheduling algorithms we propose acts by
selectively dropping LO-criticality jobs whenever the deadline
miss probability constraint is not met. It is conceived to
minimize the number of LO-criticality jobs to drop allowing
some of the LO-criticality jobs executing with HI-criticality
jobs. This way, the computational resources are better used
and the scheduling of HI-criticality tasks is not jeopardized.
We present one such offline method is presented below.

Job strategy: The job strategy is the scheduling algorithm we
propose to reduce the probability of deadline miss of a HI-
criticality job without dropping all the LO-criticality jobs in
the system. Classically, all the LO-criticality jobs are dropped
in the high criticality mode. A choice to drop a single job in
the ordered list of jobs requires complete re-evaluation of the
whole system to prove optimality. This is because the response
times depends on the execution of the previously executed jobs.
The strategy to choose needs to ensure the optimality as well as
the safety of the resulting schedule. The complexity of doing
so for every job to prove optimality and safety is O(nn), where
there are n jobs in the hyperperiod. Such complexity does
not include the complexity of the probabilistic schedulability
analysis applied; it is only for exploring all the jobs.

What we present here is not an optimal strategy to maxi-
mize the deadline miss probability reduction per job dropped.
However, it is better than classical MC scheduling strategies
in which all the LO-criticality jobs are dropped whenever the
system enters high criticality mode [3].

Interference isolation: The set of LO-criticality jobs J
over

(JHI
i j )

which overlap to the execution of a job JHI
i j is:

J
over

(JHI
i j )

de f
= {Jgh : pgh < pi j,dgh > ai j,Jgh ∈ ΓLO}. (5)

The jobs in this set directly impose a probabilistic de-
lay/backlog in the execution of JHI

i j , as depicted in the Figure

6 by jobs JLO
rt and JLO

k j . All the jobs in J
over

(JHI
i j ) impose an

indirect backlog to JHI
i j . A certain amount of job backlog is

passed in their order of priority and thus indirectly to the job
JHI

i j . The term ‘interference isolation’ refers to the separation
of JHI

i j from the indirect backlog.

}
Jxy

JLO
rt

JLO
k j

JHI
i j

backlog

Dropped jobs

t

arrival
deadline

ai j

Fig. 6: The backlog to the HI-criticality job JHI
i j reduces to zero

by dropping jobs JLO
rt and JLO

k j .

Lemma 1 (Backlog isolation). The backlog for a HI-criticality

job JHI
i j reduces by the maximum amount if all the LO-criticality

jobs in J
over

(JHI
i j ) from Equation (5) are dropped, given that

the jobs are suspended at their respective deadlines.

Proof. With continuous distributions defined in [0,∞), a job is
always executing and always imparting a probabilistic backlog
to next jobs until its deadline. For the job JHI

i j this is when all
these jobs are removed to ensure a maximum reduction in
deadline miss probability. Due to the job suspension at the
deadline, whenever there is minimum execution overlap, the
backlog carried on to the next job reduces by a maximum. By
maximum, it is meant the best possible effort to reduce the
probability. The backlog to JHI

i j from all the preceding jobs is

minimized, once all the jobs in J
over

(JHI
i j ) are dropped.
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The job-level scheduling strategy we propose reduces the
probability of deadline miss of a HI-criticality job by dropping
all the LO-criticality jobs in J

over
(JHI

i j ). Lemma 1 proves that
dropping all those jobs ensures the maximum possible deadline
miss probability reduction for JHI

i j . Thus, the strategy is: 1)

identifying J
over

(JHI
i j ), 2) dropping all the jobs in J

over
(JHI

i j ).
Referring to the Figure 6, the backlog to the HI-criticality job
JHI minimizes by dropping jobs JLO

rt and JLO
k j : there is no effect

from the job Jxy to the job JHI
i j because Jxy suspends at the

deadline. The HI-criticality job in observation still retains its
own execution after dropping the jobs in the set J

over
(JHI

i j ), that

is after removing maximum interferences. The Pdm
i j obtained

once dropping all the jobs in J
over

(JHI
i j ), is the best (minimum)

deadline miss probability we can achieve for JHI
i j . If it is not

enough to meet the constraint P
dm,max
i j , Pdm

i j is still larger than

P
dm,max
i j , the problem for this job is unsolvable.

Example 2. The task set Γ from Example 1 is analyzed. Figure

7 shows the probability of deadline miss Pdm
i j for HI-criticality

jobs J26, J14 and J24 when no LO-criticality job is dropped as

{ /0}. Their corresponding set J
over

(JHI
i j ) is shown and the jobs

in it are dropped. The reduced value Pdm
i j for each job is also

shown.

{ /0}{ /0}{ /0}

Pdm
i j

1.00E +01

1.00E −01

1.00E −03

1.00E −05

1.00E −07

1.00E −09

1.00E −11

2.35E −04

8.05E −05 6.01E −05
1.09E −05

2.35E −07
4.99E −08

J
over

(JHI
i j )J

over
(JHI

i j )J
over

(JHI
i j ) J

over
(JHI

i j )J
over

(JHI
i j )J

over
(JHI

i j )

J26 J14 J24

{J62,J35,J53,J43} {J41,J51,J32} {J33,J52,J42}

Fig. 7: Probability of deadline miss of the job J14 vs the LO-
criticality jobs dropped.

VI. CONCLUSION AND FUTURE WORK

With this work, we have proficiently applied probabilistic
formal methods (DTMC) to model and analyze MC pRTSs.
The pWCRT is used to define the MC behaviour of the jobs
with a threshold parameter (li j) to distinguish between low
criticality mode and high criticality mode for HI-criticality
jobs. The DTMC representations of the runtime behaviour are
studied to quantify the probability of the system entering HI-
criticality mode. DTMC is also used to obtain deadline miss
probability of HI-criticality jobs, and it can be easily extended
to tasks in the future works. We have proposed heuristics to
selectively drop LO-criticality jobs in order to achieve the
required maximum probability of deadline miss. This study
does not yet focus on the scalability. They are enhancements
to existing MC schedulability that allow for a better use of the
computational resource by reducing the number of dropped
LO-criticality jobs.
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Abstract—Mixed-criticality federated scheduling (MCFS) lets 
parallel real-time tasks with different criticality levels co-exist on 
a common multi-core host, guaranteeing that lower-criticality 
tasks do not interfere with timely completion of higher-criticality 
tasks, even if tasks exceed their nominal utilizations.  However, 
lower-criticality tasks may be suspended or dropped in MCFS, to 
accommodate any higher-criticality task’s increased utilization 
requirements. Recent advances in elastic scheduling theory and 
concurrency platforms for parallel real-time (PRT) tasks offer a 
more graceful way to handle such resource reallocation, however, 
by exploiting elasticity of lower-criticality tasks’ utilizations.  In 
this paper we summarize those advances, provide a combined 
elastic multi-criticality PRT task model, sketch strategies for 
leveraging elasticity, and give brief illustrative examples showing 
how such elasticity can provide a more graceful means of 
resource reallocation in mixed-criticality federated scheduling. 

Keywords—mixed-criticality, parallel real-time systems, elastic 
scheduling, federated scheduling 

I. INTRODUCTION 
Parallel real-time computing has emerged as an important 

means to harness the increasing computational capacity of off-
the-shelf multi-core computing platforms at fine-grained time-
scales, especially in a growing number of complex cyber-
physical applications ranging from autonomous vehicles [1] to 
real-time hybrid structural testing (RTHS) [2]. To conduct 
RTHS experiments involving hundreds-of-degrees of freedom 
finite element models that must be computed at millisecond 
time-scales, the RTHS system in [2] relies on Federated 
Scheduling [3] to calculate how many cores must be dedicated 
to each parallel real-time task to ensure schedulability.  

Federated Scheduling also has been extended to support 
mixed-criticality tasks [4][5]. This Mixed-Criticality Federated 
Scheduling (MCFS) approach can reduce pessimism in 
resource allocation by (1) allowing higher-criticality tasks to 
designate a worst-case overload utilization as well as a 
common-case nominal utilization, and (2) allowing lower-
criticality tasks to meet their deadlines as long as higher-
criticality tasks only require their nominal utilizations, but still 
ensure that higher-criticality tasks will meet their deadlines 
even if they end up requiring their overload utilizations. 
 Whenever a higher-criticality task exceeds its nominal 
utilization, MCFS reallocates an appropriate number of cores 
to meet that additional demand and ensure it still meets its 
deadline.  Although MCFS tries to do this gracefully by 
minimizing how many lower-criticality tasks are impacted, one 
or more lower-criticality tasks may become unschedulable. 

In this paper, we show how recent advances in elastic 
scheduling of parallel real-time tasks [6] can be combined with 

the MCFS approach, to increase flexibility of lower-criticality 
tasks to degrade gracefully whenever a higher-criticality task 
exceeds its nominal utilization.  We support parallel real-time 
task sets with arbitrary numbers of criticality levels, in which 
each task’s elasticity may be temporal (varying its minimum 
inter-arrival time) or computational (varying its work). 

The main contribution of this paper is a mixed-criticality  
model in which (1) each  task runs at its nominal utilization 
until a virtual deadline is overrun, (2) tasks at the criticality 
level where the overrun occurred then run at a (higher) 
overload utilization, and (3) tasks with criticality levels below 
that at which the overrun occurred run with monotonically non-
increasing (or if possible even decreasing) utilizations that are 
no larger than their nominal utilizations, which can adapt them 
elastically to remaining resources, versus being dropped.  

Section II discusses related work, including background 
information on mixed–criticality federated scheduling and 
elastic scheduling. Section III describes a combined elastic 
multi-criticality task model and an illustrative parallel real-time 
task set. Section IV considers different strategies for graceful 
degradation based on that model. Section V discusses 
implications of different strategies and available cores, for the 
task set from Section III. Section VI concludes our discussion 
and describes several relevant directions for future work. 

II. BACKGROUND AND RELATED  WORK 
In this section we first present background information 

about Federated Scheduling and Mixed-Criticality Federated 
Scheduling.  We then summarize prior work on elastic 
scheduling of sequential and parallel real-time tasks.  

A. Mixed-Criticality Federated Scheduling (MCFS) 
Federated Scheduling [3] supports DAG-structured implicit 

deadline sporadic parallel real-time tasks, without requiring 
task decomposition or a priori  knowledge of their internal 
subtask structure – instead, each task is abstracted to a concise 
tuple of parameters, which capture the information needed to 
schedule it successfully: (Ci,	 Li,	 Di) where Ci is the task’s work, 
Li is its span (a.k.a. its critical path), and Di is its implicit 
deadline (and also its minimum inter-arrival time or period).    
 MCFS [4][5] extends that model to include a criticality 
level Zi and for each distinct criticality level a separate work 
and span.  For example, in a two-criticality system where Zi	 ∈	
{LO,	 HI}, the tuple is (Zi,	 CiLO,	 CiHI,	 LiLO,	 LiHI,	 Di).  MCFS gives 
each higher-criticality task a virtual deadline (an idea used in 
other prior work on uniprocessor [7] and multi-processor [8] 
real-time scheduling of mixed-criticality task sets). Such a 
virtual deadline captures the time at which the system must 
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transition into that task’s given criticality level to ensure the 
task meets its implicit deadline, even if it exceeds its nominal 

utilization U012 = 	
45
67

85
 .  

B. Elastic Scheduling 
Buttazzo et al. developed the original model for elastic 

uniprocessor scheduling of sequential implicit deadline tasks 
[9]. Instead of a single fixed minimum inter-arrival time (or 
period), in that model each task τi has a range of acceptable 
minimum inter-arrival times (or periods) , from Ti(min) to 
Ti(max), and an elastic coefficient Ei that expresses how readily 
it can tolerate its performance being degraded (by increasing its 
minimum inter-arrival time within that specified range).  That 
model was extended for variable workloads by combining 
control performance optimization with real-time scheduling 
[10] and also to accommodate resource sharing [11]. Chantem 
et al. showed that the iterative algorithm for updating tasks’ 
minimum inter-arrival times in [9] is equivalent to solving a 
constrained optimization problem expressed in terms of the 
tasks’ ultilizations and elastic coefficients [12]. That model 
also was extended to tasks with constrained deadlines [13]. 

Our recent work [6] has extended elastic scheduling 
techniques to parallel real-time task sets in which each task’s 
work or its minimum inter-arrival time may be elastic. That 
model allows us to represent each temporally elastic task as a 
tuple (Ci,	 Li,	 Ui(max),	 Ui(min),	 Ei) where Ci, Li, and Ei are the task’s 
(fixed) work, span, and elastic coefficient, respectively, and 
Ui(max) and Ui(min) are its maximum (desired) and minimum 
(acceptable) utilizations, respectively. Each computationally 
elastic task can be represented in a similar manner, as a tuple 
(Ti,	 Li,	 Ui(max),	 Ui(min),	 Ei) where Ti is the task’s (fixed) 
minimum inter-arrival time and the other parameters have the 
same interpretation as for temporally elastic tasks – that is, for 
temporally elastic tasks we fix Ci and allow Ti to vary, while 
for computationally elastic tasks we fix Ti and allow Ci to vary.  

Su and Zhu [14] combined elastic scheduling and mixed-
criticaltiy scheduling techniques, adjusting lowest-criticality 
tasks periods in uniprocessor mixed-criticality systems, under 
an early-release earliest deadline first (ER-EDF) scheduling 
policy, to improve schedulability.  Huang et al. [15] developed 
an optimal variable-precision approach based on 0-1 knapsack 
that provides computational elasticity for graceful degradation. 
In comparison to those approaches, the model presented in this 
paper (1) supports task sets in which each task may have either 
computational or temporal elasticity (of workload or period, 
respectively), (2) supports arbitrary numbers of criticality 
levels, and (3) does so for parallel real-time DAG tasks whose 
individual resource requirements exceed a single core. 

III. SYSTEM MODEL 
In this section we describe how features of the task models 

for multi-criticality MCFS [4][5] and our prior work on 
computation-or-period elasticity of parallel real-time tasks [6] 
can be unified into a single combined elastic multi-criticality 
task model that supports graceful degradation of mixed-
criticality parallel real-time tasks. We then describe restrictions 
on that model that are necessary to guarantee schedulability 
under the current state of the art in elastic scheduling of 
parallel real-time tasks, i.e., via the techniques presented in [6]. 

Finally, we present an illustrative example task set under that 
model. The model and example are used to develop and 
explain new elastic compression strategies for graceful 
degradation, as described and discussed in Sections IV and V. 

A. Towards a Generalized Elastic Task Model for MCFS 
Without loss of generality, we define an implicit deadline 

parallel real-time task model that combines features from 
MCFS [4][5] and our recent work on elastic scheduling of 
parallel real-time tasks [6]. In this combined model, each task 
τi is expressed as a tuple (Zi,	 Ci,	 Li,	 Di,	 Ei) where: Zi is the task’s 
criticality level; Ci, Li, and Di are themselves (criticality-
indexed) tuples expressing the task’s work, span, and implicit 
deadline at each criticality level in the system; and Ei is the 
task’s elastic coefficient, with the same semantics as in [6] (a 
higher Ei means a task’s utilization is more easily changed, 
though an entire core at a time with federated scheduling). 

Each task’s Zi value is a non-negative number less than or 
equal to the  maximum criticality level ZMAX. The number of 
criticality levels in the system is ZMAX+1	 =	 |Ci|	 =	 |Li|	 =	 |Di|.  
In a 3-criticality task set, e.g., ZMAX is 2 and ∀i	 Zi	 	∈	 {0,	 1,	 2}. 
We use C-style array notation to index individual values in Ci, 
Li, and Di, e.g., the work of task τi at the lowest criticality level 
is Ci[0] and at the highest criticality level is Ci[ZMAX].  

As in MCFS [4][5] we define the target utilization1 of each 
task τi at any criticality level j to be: U0 j =

45 J
85 J

 and define the 
number of cores task τi needs in order to meet its implicit 
deadlines at that criticality level to be: m0[j] 	= 	

45 J K	15 J
85 J K	15 J

 . 

At any system-wide criticality level j > 0, we then compress 
degraded tasks’ utilizations as in [6] per an updated constrained 
optimization based on the formulation from Chantem et al. 
[12], for elastic mixed-criticality parallel real-time tasks, with 
respect to m total cores for the entire system): for each task  τi 
whose Zi < j, select its utilization value LM  to minimize 

N
O5
U0 P0 − U0 R∀M|TUVW

	 such that ∀X	 LM YZ[\ ≤ LM ≤
	LM[P0] 	∧ 	m	 ≥ m`

a
`bN j , where P0  is Y0  if task c0  has 

overrun its virtual deadline, or 0 if it has not, and each task’s 
required number of cores is based on its specified deadline, 
work, and span at that step in the compression algorithm. 

Although the generality of this representation is useful 
(especially for future work as described in Section VI), it is 
able to express task sets whose schedulability cannot be 
guaranteed by the techniques presented in [6], and whose 
accommodation is therefore deferred to future research, as we 
describe in Section VI.  For this paper we restrict the values 
that some of the parameters in the task model above can be 
assigned, so that schedulability can be guaranteed by the 
techniques presented in [6], as we discuss next.  

B. Restrictions on Task Set Parameters 
We first restrict the compression of any degraded task c0	to 

the continuous range from U0 P0 down to U0 YZ[\ . For 
consistency with the task model in [6], we set each task’s span 
to be the same at all criticality levels: ∀	 i,j,k	 	 Li[j]	 =	 Li[k]. We 

                                                             
1 Ui[j]	denotes τi’s target utilization at criticality level	j, and simply Ui 

denotes the utilization chosen for τi by the compression algorithm. 
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next restrict each task to be either only temporally elastic or 
computationally elastic (but not both), by setting the work 
values of each temporally elastic task τv to be the same and 
setting the implicit deadline values of each computationally 
elastic task τw to be the same:  ∀	 x,y	 	 Cv[x]	 =	 Cv[y] vs. ∀	 x,y		
Dw[x]	=	Dw[y] respectively. 

In addition to these fundamental restrictions, we now 
discuss how other parameters of the task set are calculated and 
used in this combined approach.  We begin by designing 
utilization semantics that are consistent with both mixed-
criticality guarantees and graceful degradation objectives. 

We assign virtual deadlines as in [4][5]. Since exceeding a 
virtual deadline requires adaptation of current jobs with respect 
to their current periods or workloads (either gaining or losing 
cores), we require that for computationally elastic tasks the 
work of a higher utilization version strictly extends the work of 
a lower utilization version of that same task – that is, a job’s 
completed work counts towards all its subsequent utilizations. 

At run-time, a current system-wide criticality level is set to 
0 at system initialization, and is tracked and updated 
dynamically at run-time.  Whenever a task exceeds its virtual 
deadline, an event noting that task’s overrun is delivered to a 
scheduler, which as in [6] runs on its own dedicated core and is 
responsible for triggering adaptation by updating scheduling 
parameters in shared memory and then notifying tasks.  The 
scheduler compares the criticality of the task noted in the event 
to the current system wide-criticality, and if the system-wide 
criticality is less than that of the task it is increased to that level 
and elastic adaptation is triggered. The scheduler resets the 
current system-wide criticality level to 0 at the end of each 
hyperperiod2 of the task set, and the virtual deadlines of tasks 
whose specified criticality levels are greater 0 are re-activated 
within the new hyperperiod. 

As in MCFS [4][5] each task τi operates at its nominal 
utilization3 	U0 0 	whenever the system-wide criticality level  
either is below that task’s specified criticality level Zi, or (for 
lowest-criticality tasks) both it and the task’s specified 
criticality level are 0:  ∀	i, j	|	hb	Jb	i5		∨	J	k	i5		U0 j = 	 	U0 0  . 

As in MCFS [4][5], except for tasks at the lowest criticality 
level, each task τi is allowed to operate at its higher overload 
utilization U0 Z0	 	whenever the system-wide criticality level is 
equal to its specified criticality level Zi : 

  ∀	i	|	i5	l	h		U0 Z0	 > U0 0  . 
So far, the task model adheres to the semantics of the 

MCFS task model [4][5]: at each criticality level, utilizations 
are not specified for tasks whose Zi values are below that level, 
and any task whose Zi level has been exceeded is assumed to 
be dropped or suspended.  We now allow each task to fill in 
successively higher criticality levels beyond its specified 
criticality, with monotonically non-increasing (or if at all 
possible ideally monotonically decreasing) utilizations that are 
no larger than their nominal utilizations, which may allow 
them to adapt elastically to remaining resources when 

                                                             
2 The hyperperiod is calculated using each task’s current Di value. 
3 We do not allow tasks to have higher utilizations at intermediate 

criticalities below their specified level, and defer that to future work. 

degraded, not dropped: ∀	i, j	|	inopq	J	l	i5		U0 j 	≤ 	U0 0  and 
∀	i, j	|	inopl	J	l	i5		 		U0 j + 1 ≤ 	 	U0 j  . 

In the resulting model, tasks operate at their nominal 
utilizations until they overrun their virtual deadlines, at which 
point the system-wide criticality level is increased to their 
specified criticality level (unless it already is at that level or 
higher). Only tasks at that criticality level that have overrun 
their virtual deadlines will operate at their higher (overload) 
utilizations, while others with that specified criticality level 
that have not overrun their virtual deadlines will continue to 
operate at their lower (nominal) utilizations. At even higher 
system-wide criticality levels those same tasks may operate at 
successively lower (degraded) utilizations according to their 
specified elastic coefficients and the adaptation strategy chosen 
as we discuss further in Section IV.A. Because only tasks that 
are running at their nominal utilizations (i.e., tasks whose 
specified criticality levels are below the system-wide criticality 
level) need to use virtual deadlines to trigger criticality mode 
changes, for simplicity of the model we simply inactivate the 
virtual deadline detection and handling for any task whose 
specified criticality level is at or below the current system wide 
criticality level. We discuss briefly the possibility of a more 
nuanced treatment of this issue as future work, in Section VI. 

We impose one last restriction to remain consistent with the 
elastic parallel real-time scheduling semantics from [6], which 
only pertains to heavy tasks whose utilization requires more 
than one core. In this paper we require that at each criticality 
level each task behaves as a heavy task: 	∀	i, j			U0 j > 	1 . 

C. Illustrative Example Task Set 
We illustrate our new model using a 3-criticality 5-task 

elastic task set, with tasks at each criticality level. Table I 
shows each task’s criticality level and elastic coefficient, as 
well as the numbers of cores needed by each task τi at each 
criticality level (m0 0 , m0 1 , and m0 2 , respectively). 

TABLE I.  EXAMPLE 3–CRITCALITY 5-TASK ELASTIC TASK SET 

Task Ei Zi mi[0] mi[1] mi[2] 

τ1 5 0 8 6 4 

τ2 4 0 6 4 2 

τ3 3 1 4 6 2 

τ4 2 1 4 6 2 

τ5 1 2 2 2 6 
 

The light grey region in Table I shows the numbers of cores 
each task τi needs when it is operating at its nominal utilization 
	U0 0 .  The next darker grey region shows the number of cores 
needed by each task at its overload utilization 	U0 	Z0 .  The 
darkest grey region shows the minimum numbers of cores each 
task needs at each criticality level beyond its specified 
criticality level 	Z0.  At system-wide criticality level 0 tasks τ1 

and τ2 use 8 cores and 6 cores respectively, tasks τ3 and τ4 each 
use 4 cores, and task τ5 uses 2 cores.  At criticality level 1 tasks 
τ3 and τ4 each may need two additional cores (if both overrun 
their virtual deadlines) but tasks τ1 and τ2 only will need 6 
cores and 4 cores respectively, and thus together can give up as 
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many as 4 cores.  At criticality level 2 task τ5  needs four 
additional cores, tasks τ3 and τ4 each can give up four cores 
(compared to their overload utilizations) and together tasks τ1 

and τ2 can surrender up to 8 cores total compared to their 
maximum desired utilizations. 

IV. ELASTIC COMPRESSION FOR GRACEFUL DEGRADATION 
The elastic multi-criticality task model described in Section 

III allows different approaches to degrading the utilizations of 
tasks whose criticality levels have been exceeded, to reallocate 
resources to tasks whose utilizations are at their overload levels 
or to accommodate limited allocations of processor cores. We 
identify two such strategies, one in which all degraded tasks 
are compressed elastically together at once, and one in which 
compression proceeds from tasks with lower specified 
criticalities to tasks with higher ones. 

We note that since each task is given its own separate set of 
cores, by design in the model presented in Section III the 
progress of each task is independent of the progress of the 
other tasks, except to the extent that cores may be taken from 
one task and given to another. Thus, the maximum desired 
utilization of any task τj that has not missed its virtual deadline 
is its nominal utilization Uj[0], while any task τk that has 
overrun its virtual deadline is assumed to need its higher 
overload utilization Uk[Zk], independent of the current system-
wide criticality level. The maximum range over which the 
utilization of any task τi can be adapted elastically is therefore 
from its maximum desired utilization (Ui[Zi] if it has overrun 
its virtual deadline, or Ui[0] if it has not) down to its absolute 
lowest minimum acceptable utilization Ui[ZMAX], with such 
adaptation governed by its elastic coefficient Ei and the 
alternative elastic compression strategies we discuss next. 

A. Common Structure of Both Strategies 
 Both strategies first select the set of tasks that should be 
compressed: all tasks whose specified		Z0 values are lower than 
the current system-wide criticality level.  Each strategy starts 
by compressing that set at the current system wide criticality 
level (according to that strategy’s compression policy), and if 
that is insufficient successively (1) changes the minimum 
acceptable utilization of each task to be its (monotonically non-
increasing) utilization value at the next higher criticality level 
and (2) applies its compression policy again, until utilizations 
are reached at which the task set fits within the allocated 
number of cores.  Under either of these strategies, elastic 
compression is used only to make degradation of lower-
criticality tasks as graceful as possible. If sufficient cores 
cannot be released elastically at a given criticality level, both 
strategies revert to an approach similar to that used in MCFS 
[4][5], by selectively dropping tasks in order (from highest to 
lowest utilizations at the lowest criticality level, then highest to 
lowest utilizations at the next higher criticality level, etc.), until 
the (respectively nominal, overload, or degraded) resource 
requirements of the remaining tasks can be met. 

B. Criticality-Insensitive Compression of Degraded Tasks 
The first strategy exploits the elasticity of all tasks that 

were selected for compression at once, in a manner that is 
insensitive to their specified individual criticality levels. This 

strategy takes all of the selected tasks together and adjusts their 
utilizations based on their elastic coefficients, as in [6].  For 
example, in the task set shown in Table I, at system-wide 
criticality level 2 tasks τ1, τ2, τ3 and τ4 would all compress their 
utilizations together at once to release cores that would be 
given to task τ5. Although in that example the lowest criticality 
tasks have the highest elastic coefficients, it also is possible to 
have a task set in which lower criticality tasks are less elastic. 

C. Criticality-Sensitive Compression of Degraded Tasks 
The second strategy is sensitive to the specified individual 

criticaltiy levels of the tasks selected for compression, and 
takes utilization away preferentially from lower criticality 
tasks, and only when their elasticity is exhausted (i.e., they 
have reached their lowest specified utilizations) exploits the 
elasticity of higher-criticality tasks.  For example, in the task 
set shown in Table I, at system-wide criticality level 2 tasks τ1 
and τ2 would first compress their utilizations together at once 
(according to their respective elastic coefficients), and only if 
enough resources were not released when both tasks τ1 and τ2 
reached their minimum acceptable utilizations would tasks τ3, 
and τ4 then compress their utilizations together at once (again 
according to their respective elastic coefficients) to release the 
remaining cores that would need to be given to task τ5. 

V. DISCUSSION 
 A key issue with the adaptation strategies described in 
Section IV is how many processor cores overall are available 
to the task set.  With the increasing applicability and relevance 
of real-time virtualization in particular [16][17], a task set may 
be run within a real-time virtual machine that is allocated a 
dedicated set of cores, and multiple real-time virtual machines 
(each with its own set of dedicated cores) may run within a 
single multi-core host machine.   Within each virtual machine, 
some of its allocated cores also may be further dedicated to 
particular system services and mechanisms. Although such 
offloading avoids contention with the task set to improve 
performance, cores thus allocated are unavailable to the task set 
itself.  For example, in addition to the core dedicated to the 
elastic scheduler (e.g., to ensure predictably timely notification 
and adaptation) other cores may be dedicated to I/O and other 
activities (e.g., to improve responsiveness).  
 It is thus essential to consider how a task set will behave at 
each criticality level with different total numbers of cores 
available, under the different elasticity strategies described in 
Section IV.  In this section we first identify meaningful values 
for the number of cores allocated to a task set as a function of 
its utilization requirements, including a “sufficient” value we 
suggest as a design target when using our approach and a lower 
“limited” value we posit as the minimum reasonable allocation. 
We then consider system behavior with different numbers of 
cores, for the task set shown in Table 1, including using the 
elastic compression strategies if necessary.  

A. How Many Cores to Allocate to a Task Set 
 We begin by considering an upper bound on how many 
cores would be useful to allocate to a task set, which is the sum 
of the cores needed by each task at its specified criticality level 
(which as noted above, is when each task’s maximum 
utilization occurs). With that number of cores, no elastic 
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compression is needed. In the example task set shown in Table 
I, this upper bound is 8 + 6 + 6 + 6 + 6 = 32 cores. 
 A more salient number is the maximum of the sums of the 
cores needed by the tasks at each criticality level (e.g., the 
maximum of the column sums for any criticality level in Table 
1). If provisioned, that number of cores would allow all tasks 
to operate at their specified utilizations at each criticality level 
(even if all tasks with specified criticalities equal to the curent 
system-wide criticality level have overrun their virtual 
deadlines), but may require adaptation according to the 
strategies drescribed in Section IV.  In Table I, this number is 
24 (at criticality levels 0 and 1 – criticality level 2 requires only 
16 cores).  We call this a “sufficient” number of cores and 
suggest it as a design target for provisioning cores to task sets 
under our combined multi-criticality elastic approach. 
 We identify numbers of cores less than the “sufficient” 
value as being “limited.” Numbers of cores above the 
“sufficient” value (up to the useful limit noted previously) are 
considered “abundant” – e.g., 28 cores for the task set shown in 
Table 1.  We note that having a “limited” allocation of cores 
means that in at least some criticality levels, some tasks cannot 
operate at even the utilizations given there and must degrade to 
a lower utilization given at a higher criticality level. 
 Within the “limited” values, the minimum total cores 
required at any criticality level (e.g., 16 for level 2 in Table 1) 
is important since below it at least some task must be 
suspended or dropped at every criticality level. However, this 
is not an acceptable design constraint for provisioning such 
elastic multi-criticality systems, as with it tasks still may need 
to be suspended or dropped in at least some criticality levels. 
 Rather, to avoid having to suspend or drop any tasks when 
the system-wide criticality is at any level, we must consider 
how many cores are needed at each system-wide criticality 
level x for: (1) the minimum acceptable utilizations of tasks 
whose specified individual criticality level is less than x or is 0; 
and (2) nominal or overload utilizations at level x of tasks 
whose specified individual criticality levels are greater than or 
equal to that level and are greater than 0. Thus, we must take 
the maximum value over all criticality levels: mr0a =
max

hstsinop
U0 ZZ[\	i5kt	∨		i5bh + U0 x	i5qt	∧		i5lh . Note 

that in the task set shown in Table 1, for example, this value is 
4 + 2 + 6 + 6 + 2 = 20, which occurs when x is 1 (with tasks τ1 
and τ2 at their minimum acceptable utilizations of 4 and 2 
respectively, tasks τ3 and τ4 at their overload utilizations of 6 
each, and task τ5 at its nominal utilization of 2).  

B. Operation at Different Criticality Levels 
We now examine how the elastic adaptation strategies 

described in Section IV behave at each system-wide criticality 
level for the example task set shown in Table 1, with different 
relevant numbers of allocated cores. We identify cases where 
no adaptation is needed, where adaptive behavior is the same 
under both elastic compression strategies, and where adaptive 
behavior differs between the two strategies. 

Criticality level 0: With 24 cores allocated to the task set 
illustrated in Table 1, when the system-wide criticality is at 
level 0, each task τi will run at its nominal utilization Ui[0] 
until (and unless) a higher-criticality task (whose specified Zi 

value is greater than 0) exceeds its virtual deadline, at which 
point the system-wide criticality level is increased to that 
tasks’s specified Zi value.  Adding more cores has no effect on 
the behavior since all tasks highest desired utilizations at that 
criticality level are already met with 24 cores.  However, with 
only 20 cores when the system is initialized with criticality 
level 0, the number of cores allocated is below the 24 cores 
needed at that criticality level for the task set shown in Table 1. 
The elastic compression protocol selects tasks τ1 and τ2 as the 
set it will try to compress, and updates their minimum 
acceptable utilizations to be their utilizations at criticality level 
1, which successfully fits the task set’s utilization requirements 
within 20 cores.  Since only tasks withh Zi values of 0 are 
selected, both compression strategies give the same results. 
 Criticality level 1: When the system-wide criticality level 
is 1, with 24 cores allocated if both tasks τ3 and τ4 have overrun 
their virtual deadlines (or 22 cores if only one of them has) 
each task τi in Table 1 will run at its specified utilization at that 
criticality level, Ui[1], until (and unless) task τ5 (whose 
specified Zi value is 2) exceeds its virtual deadline, at which 
point the system-wide criticality level is increased to 2.  With 
28 cores allocated, tasks τ1 and τ2 will run at their desired 
maximum (nominal) utilizations, which are higher than their 
specified (degraded) utilizations at criticality level 1.   
 However, with less than 24 cores, if both tasks τ3 and τ4 
have overrun their virtual deadlines (or less than 22 cores if 
one of them has not) the elastic compression protocol is again 
invoked at system-wide criticality level 1, since a total of 24 
cores (or 22 respectively if either task τ3 or τ4 has not overrun 
its virtual deadline) is needed at that criticality level.   The 
protocol again selects tasks τ1 and τ2 as the set it will try to 
compress, and updates their minimum acceptable utilizations to 
be their specfied utilizations at criticality level 2, which allows 
the task set to fit within that number of cores, after elastic 
compression. Since only tasks with Zi values of 0 are selected, 
both elastic compression strategies again give the same results. 
 Criticality level 2: With 20 or more cores, when the 
system-wide criticality level is 2, each task τi in Table 1 is able 
to run at or above its specified utilization at that criticality 
level, Ui[2]. Note that unless task τ3 (respectively τ4) has 
overrun its virtual deadline its maximum desired and minimum 
acceptable utilizations are the same and it will not factor into 
the compression algorithm from [6].  If neither task τ3 nor task 
τ4 has overrun its virtual deadline, only tasks τ1 and τ2 will be 
compressed and both strategies will produce the same results.   
 With 20 cores available, and tasks τ3 and task τ4 having 
both overrun their virtual deadlines, the two compression 
strategies will produce different results.  Both strategies give 
task τ5 6 cores, to meet its overload utilization requirements. 
The criticality-insensitive compression strategy meets task τ1’s 
minimum acceptable utilization with only 4 cores since it has 
the highest elastic coefficient, gives tasks τ2 and τ3 each 3 cores 
(1 more than is needed for each of their respective minimum 
acceptable utilizations), and gives task τ4 4 cores (2 more than 
is needed for its minimum acceptable utilization).  The 
cricality-sensitive compression strategy will give tasks τ1 and 
τ2 only enough cores to meet their minimum acceptable 
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utilizations (4 and 2 respectively), while tasks τ3 and τ4 are 
each given 4 cores (2 more than their minimum acceptable 
utilizations, but 2 less than their maximum desired utilizations 
of 6 each since both have overrun their virtual deadlines). 

VI. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 
In this paper we have presented a new multi-criticality 

elastic task model that combines features from Mixed-
Cricitality Federated Scheduling [4][5] and elastic scheduling 
of parallel real-time tasks [6].  For now we have restricted the 
use of that model so that the elastic adaptation of lower-
criticality tasks can be guaranteed to meet deadlines and to 
optimize how utilizations are adjusted elastically.  We have 
presented and discussed alternative strategies to manage elastic 
compression, and have illustrated them via an example task set. 

To remove the first restriction in Section III.B, we plan to 
allow spans (as well as work) of computationally elastic tasks 
to vary across criticality levels. We also will extend our model 
so that any task can be both computationally and temporally 
elastic.  This would allow us to remove the restrictions in 
Section III.B that required work values to be the same within 
each temporally elastic task, and required implicit deadlines to 
be the same within each computationally elastic task. 

We also will support adapting the system-wide criticality 
level downward inside each hyperperiod, to free up resources 
for lower-criticality tasks as soon as possible.  For example, 
since (1) each parallel real-time task has its own cores, (2) 
virtual deadlines are used to track overruns, and (3) each task’s 
next release is at its deadline, when a task overruns its virtual 
deadline, a counter at its criticality level is incremented, and 
when a task finises execution the counter at its criticality level 
is decremented – if the counter at the current system-wide 
criticaltiy level decreases to 0, the system-wide criticality level 
decreases to the next criticality level with a non-zero counter 
(or to 0 if all counters are 0).  Recalculating virtual deadlines 
for tasks with criticality levels between the new system-wide 
criticality level and the (higher) previous one may be rather 
nuanced in some cases, and so this is defered to future work. 

To reduce pessimism inherent in core-level allocation of 
resources, we will explore elastic mixed-criticality models in 
which a task may change between light and heavy utilization.  
We also will investigate whether other parallel real-time 
scheduling models besides Federated Scheduling could be used 
in our approach (again to make fuller use of available cores).  

Finally, another direction for extending this research is to 
support task models with only discrete values for each task’s 
work and span at each criticality level, and possibly also to 
support only discrete inter-arrival times.  This will require a 
different approach than the techniques presented in [6] but is 
potentially more realistic since especially for computational 
elasticity, most code (other than anytime computations) tends 
to have discrete execution costs rather than continuous ones. 
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Abstract—Research on mixed-criticality scheduling has flour-
ished since Vestal’s seminal 2007 paper, but more efforts are
needed in order to make these results more suitable for industrial
adoption and robust and versatile enough to influence the
evolution of future certification standards in keeping up with
the times. With this in mind, we introduce a more refined
task model, in line with the fundamental principles of Vestal’s
mode-based adaptive mixed-criticality model, which allows a
task’s criticality and its importance to be specified independently
from each other. A task’s importance is the criterion that
determines its presence in different system modes. Meanwhile,
the task’s criticality (reflected in its Safety Integrity Level (SIL)
and defining the rules for its software development process),
prescribes the degree of conservativeness for the task’s estimated
WCET during schedulability testing. We indicate how such a task
model can help resolve some of the perceived weaknesses of the
Vestal model, in terms of how it is interpreted, and demonstrate
how the existing scheduling tests for the classic variant’s of
Vestal’s model can be mapped to the new task model essentially
without changes.

I. BACKGROUND

A. Introduction

Mixed-criticality systems are an important niche of real-
time embedded systems, their defining characteristic being the
fact that computing tasks of different criticalities execute on
the same hardware and share system resources1. The criticality
of a task is a measure of the severity of the consequences of
a task failing (which, in the context of real-time scheduling
means missing its deadline). Indeed, some tasks missing their
deadline can have catastrophic consequences, whereas other
tasks occasionally missing their deadlines might only have a
minor effect. For this reason, the higher a task’s criticality,
the more conservative (and costlier, in terms of effort, time
and money) the approach employed to upper-bound that task’s
worst-case execution time2.

The sharing of system resources among tasks of different
criticalities, unless carefully managed, can give rise to unde-
sirable interactions that compromise safety. For this reason,

Work partially supported by National Funds through FCT (Portuguese Foundation for
Science and Technology) within the CISTER Research Unit (CEC/04234).

1When tasks of different criticalities exist but are completely isolated,
such systems are multiple-criticality, as opposed to mixed-criticality, and they
constitute a different class of systems. See Footnote 1 in [1] and in [2].

2In Steve Vestal’s words: “ . . . the more confidence one needs in a task
execution time bound (the less tolerant one is of missed deadlines), the larger
and more conservative that bound tends to become in practice.” [3]

and before getting to specific scheduling arrangements, the
various certification authorities generally prescribe that (i) ap-
plications of lower criticality should not be able to cause the
failure of tasks of higher criticality, and (ii) when tasks of
different criticality share the same resources, they must all be
engineered to the same strict standard of safety as the highest-
criticality task thereamong. Clearly, this is inefficient. For this
reason the certification authorities, in their guidelines [4], do
not insist in zero interference among mixed-criticality appli-
cations, but instead expect such interference to be carefully
accounted for and adequately mitigated3. In the context of
the WCET problem, also analysing low-criticality tasks using
highly conservative and pessimistic static WCET analysis
techniques, as in the case of highly-critical components, would
be wasteful of processing capacity. In fact, it would defeat the
purpose behind the strong industrial shift to mixed-criticality
scheduling, which is to efficiently utilise today’s powerful
multicores and reduce costs, size, weight and power.

B. Vestal’s model and its evolution

This reality motivated Vestal to propose the use of differ-
ent WCET estimates with different corresponding degrees of
assurance, for the same task, in different scenarios, in order
to ensure a priori the correct temporal behavior of the system
at run-time [3]. To illustrate the principle, consider a fixed-
priority-scheduled system and assume that each task has both
a (i) “reasonable” but, not conclusively safe, WCET estimate
and (ii) a highly pessimistic, but demonstrably safe, WCET
estimate. Then, when testing the schedulability of a low-
criticality task, one would only need to use the “reasonable”
estimates, for all higher-priority tasks, irrespectively of their
criticality, as inputs to the familiar Worst-Case Response
Time (WCRT) analysis [5] for the task under consideration.
Conversely, testing the schedulability of a high-criticality task,
one would use the respective pessimistic estimates. This initial
model, coupled with a fixed task priority scheduling policy,
was termed Static Mixed Criticality (SMC).

Baruah and Burns extended Vestal’s initial model [6] by
adding modes and the notion of run-time system criticality lev-

3For example, the CAST-32A guidelines [4], clarify that “it is therefore
important to identify the interference channels that could cause interference
between the software applications hosted by their MCP platform, to mitigate
the effects of each of those interference channels and to verify the selected
means of mitigation”.
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el. We will henceforth refer to their model as the Mode-based

Vestal model. In this variant model, each task has a (design)
criticality level and a set of WCET estimates – one for every
criticality level not exceeding its own and non-decreasing with
respect to the latter. At startup, the “system criticality level”
(in reality, an index of the system mode) is initialised to the
lowest task criticality. If a task exceeds its WCET for the
system’s current criticality level, the system stops all tasks
with criticality equal to that level and increments its criticality
level. This constitutes a mode change, upon which, all tasks
with criticalities lower than the current system criticality, are
idled. Coupled with fixed-priority scheduling, the mode-based
Vestal model is known as Adaptive Mixed Criticality (AMC),
but the model itself is orthogonal to the scheduling policy. For
example, it can be coupled with EDF [7], [8].

The execution time monitoring and dropping of lower-
criticality tasks that exceed their WCET estimate for a given
mode was a clever idea for the following reason: If a task
cannot execute for more than a certain time (corresponding
to that WCET estimate) without getting dropped, then that
estimate (which could even be an underestimation of its
true WCET), becomes a provably safe, unexceedable WCET
estimate for the task – it will never execute for more than
that. This solves the problem of unpredictable interference on
higher-criticality tasks, assuming that it is acceptable to drop
lower-criticality tasks, during the mode change, in the first
place. This assumption in AMC may, however, not always
hold, as we will discuss later, in Section I-D.

C. Terminological issues

On a related observation, and to quell some long-standing
terminology-related confusion, we note what were above re-
ferred to as “WCET estimates” (or often simply “WCETs”)
for a given task in different modes, are in reality execution
time thresholds for triggering a switch to the next-higher
mode. Except for the estimates used in the top-most mode
(which need to provably upper-bound the true, but unknown
WCETs), the estimates (i.e., thresholds) used in other modes
are reasonably expected, but not required, to upper-bound the
true WCET. However, too low a value increases the probability
of a mode change (undesirable, due to the degradation of
functionality entailed by dropping tasks) while a value that is
too high wastes processing resources. In any case, the selection
of these thresholds is up to the designer. Another terminology-
related source of confusion is the use of the term “system
criticality” to denote what is, essentially, an indicator of the
mode. Strictly speaking, “criticality” characterises applications
and their tasks. This is discussed more in Section IV.

D. Other criticisms

Criticisms are sometimes voiced about the mode-based
Vestal model [9], [10], [11], [12], [13] and its compatibility
with the safety standards (e.g., IEC61508, ISO26262 or DO-
178C) on which system certification is based. This is partially
due to Vestal’s use of the term “criticality” in a looser sense
than the meaning it has in the standards (and the precedent

that this set in the use of the term in the acadamic literature)
and partially due to more legitimate concerns.

One of the more legitimate concerns, is that dropping tasks
upon a mode change simply on the basis of their criticality, is
not necessarily acceptable course of action in the general case.
More generally, a task’s criticality is not synonymous with its
importance, which is a different attribute – and important tasks
should not be discarded.

In response to such concerns, in this work we introduce
an extension of the mode-based Vestal model, whereby
the importance of a task is decoupled from its criticality,
and is specified separately. The participation of a task in
different modes follows from its importance, not its criticality.
Meanwhile, its criticality, which determines the degree of
conservativeness in its development process, also determines
(in our model, just as in the standard mode-based Vestal), the
degree of conservativeness in the estimation of its WCET in
the different modes that it forms part of.

Note that this use of the term “importance” is different from
that employed in [14] where it is simply used as a means of
differentiating between tasks of the same criticality.

E. Outline of this paper

The rest of this paper is structured as follows. In Section II,
we describe this new model. In Section III, we describe how
the schedulability analyses developed for the standard mode-
based Vestal model can be mapped to the new decoupled
model, essentially without changes. Subsequently, in Sec-
tion IV, we discuss some of the existing criticisms to the
standard mode-based Vestal model, and how our new task
models addresses those. Section V offers concluding remarks.

II. THE DECOUPLED TASK MODEL

Consider a set ⌧
def
= {⌧1, . . . ⌧n} of n mixed-criticality

sporadic tasks. Each task ⌧i has a minimum inter-arrival time
Ti and a relative deadline Di  Ti. It also has a worst-

case execution time (WCET), whose exact value is in practice
unknowable, and can only be estimated. Different estimates
can be obtained for the same task by the use of different
techniques:

1) Provably safe WCET estimates, which are obtained by
formal analysis and/or static path analysis, with rigorous
pessimistic assumptions. They tend to be excessively
pessimistic and costly to derive, in terms of time, effort
and money.

2) Potentially unsafe WCET estimates, i.e., probably but
not provably safe. These may be derived by simplistic
path analysis, or via measurements and perhaps proba-
bilistic techniques.

Although Vestal’s model has been generalised to an arbitrary
number of criticality levels (denoted numerically), in this
work, for simplicity we assume just two criticality levels,
high (H) and low (L) – which suffice in order to illustrate
the principle. A task’s criticality is denoted by i.

Under the variant of Vestal’s model introduced with AMC,
there would be two modes (L and H), with all tasks executing
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in the L-mode and only the H-tasks executing in the H-
mode. Instead, in our model, in addition to its criticality i,
each task is also characterised by (what we conventionally
call) its importance �i, which in the general case is indicated
numerically. In this work, however, we assume that it can be
high (H) or low (L), for simplicity. This attribute, input by the
designer, reflects the design and application requirements and
the implication is that, if needed, a low-importance task can
be “dropped” (i.e., idled, at mode change) whereas a high-
importance task cannot. Therefore, under our model, which
tasks execute in which mode is determined on the basis of their
importance, not their criticality4. This is a more general model
than that by Baruah and Burns [6], which can be described as
a special case (namely, �i = i, 8i).

In accordance with the above principles, there exist 4
possible classes of tasks, corresponding to the possible com-
binations of criticality (i 2 {L, H}) and importance (�i 2
{L, H}).

Tasks of high importance (irrespective of their criticality)
can also sub-categorised into (i) tasks that are present in
the system already at start-up and (ii) tasks that are only
introduced after the mode change (e.g., as fail-safes for one
or more tasks that were dropped). Figure 1 illustrates this
model, with one task for each kind. Initially (i.e., in L-
mode), there exist 4 tasks in the system (⌧1, ⌧2, ⌧4 and ⌧5,
encircled in green). All of those have different combinations
of criticality and importance. In L-mode, the system must be
provably schedulable as long as no task executes for more
than its corresponding WCET estimate for that mode (CL

i
).

However, if any of those 4 tasks exceeds its C
L

i
, then a

mode change is triggered. The low-importance tasks ⌧1 and
⌧4 are then immediately dispensed with; the high importance
tasks ⌧2 and ⌧5 persist in the new mode. Additionally, high-
importance tasks ⌧3 and ⌧6 are added to the system, possibly
to compensate for the functionality of the dropped tasks. In
the H-mode, it has to be offline-provable that no task among
those present (⌧2, ⌧3, ⌧5 and ⌧6, encircled in red), can miss
a deadline, assuming that these tasks execute for up to their
corresponding WCET estimate for the new mode (C

i
). This

requirement also applies to jobs caught in the mode transition
(i.e., released before the mode change, but completing after
the mode change).

Note that our model imposes no constraint between the
number of (low-importance) tasks dropped at mode change
and the number of new (high-importance) tasks added to
the system after the mode change (e.g., to compensate for
their functionality). Neither is there any constraint on how
the attributes of those tasks (Di, Ti, Ci) can be related.
For convenience, a task present only in the H-mode can be
equivalently modelled, for schedulability analysis purposes,
as a task present in both modes, with C

L

i
= 0. Meanwhile,

for low-criticality but high-importance tasks (i.e., for which
a WCET estimate C

H

i
for H-mode execution needs to be

4In [11], Esper et al. discuss examples of abstract systems where a task’s
criticality does not reflect its importance.

Fig. 1: A Venn diagram illustrating the different types of tasks
in our task model, the modes that they can be part of and the
WCET estimates used for schedulability-testing purposes.

defined), we think that it is reasonable to use C
H

i
= C

L

i
. The

reason is that rare jobs that exceed this execution time can be
dropped, even in the H-mode (because the job is not critical)
but the task overall cannot be dropped (because it is important)
and its next job will arrive and be executed as normal. Still,
there is nothing in our model that prevents the designer from
specifying some other C

H

i
> C

L

i
for a low-criticality, but

high-importance, task ⌧i. As for important tasks (�i = H)
that cannot tolerate even a single dropped job, this implies
that they are in fact high-criticality and need to be specified
as such by the designer (i.e., i = H); their WCET estimates
for the H-mode would accordingly also need to be provably
safe.

Ultimately, C
H

i
� C

L

i
, for every task that is part of the

H-mode.

III. UNIPROCESSOR ANALYSIS

Having introduced the task model, we proceed with showing
how schedulability analysis formulated for the standard mode-
based Vestal model can be mapped to it. The only change to
the equations is that the task selector for the different modes is
now the task importance. For illustration purposes, we assume
a uniprocessor system and a fixed priority scheduling policy.
For this case, and for the standard mode-based Vestal model,
the literature offers the well-known AMC-rtb and AMC-max
tests (both formulated in [15]). For schedulability testing in L-
mode, for both AMC-rtb and AMC-max, a task’s worst-case
response time (WCRT) is upper-bounded by

R
L

i
= C

L

i
+

X

⌧j2hp(i)

⇠
R

L

i

Tj

⇡
C

L

j
(1)
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where hp(i) is the set of higher-priority tasks and C
L

j
is the

WCET estimate for ⌧j in L-mode.
For the schedulability testing in H-mode, the WCRT equa-

tions, for AMC-rtb and AMC-max, respectively, are

R
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i
+
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and

R
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= max(Rs

i
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where

R
s

i
= C

H

i
+

X

⌧`2hp(i)
`=L

✓�
s

T`

⌫
+ 1

◆
C

L

`

+
X

⌧j2hp(i)

j=H

⇢
M(j, s, Rs

i
)CH

j
+

✓⇠
t

Tj

⇡
�M(j, s, Rs

i
)

◆
C

L

j

�

(4)

where

M(j, s, t) = min
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⇠
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Under the new model, what changes is that, in the degraded
mode, the subset of tasks executing consists of all tasks
with �j = H (high importance) instead of j = H (high
criticality). However, it still holds that CH

i
� C

L

i
, for every

task that is part of the H-mode. Correspondingly, Equation (1)
need not be modified at all, whereas Equation (2) (AMC-rtb)
is slightly modified to
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and Equation (4) is changed to
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with Equations (3) and (5) entirely unaffected. We typeset
the modified Equations (6) and (7) with the affected terms
in oversized red, in order to highlight how minimal and how
straightforward the changes are. Note that the schedulability
test for AMC-max is still safe even when it has to be
guaranteed that jobs caught in the mode transition of tasks

that are to be dropped shall not be terminated if they do not
exceed their L-mode WCETs5. This property of AMC-max
also holds under our model, if, due to design requirements,
such semantics need to be enforced.

Adapting other schedulability tests for the standard mode-
based Vestal model (e.g., for an EDF scheduling policy, with
uniform [7] or per-task [8] deadline scaling), is analogous.

IV. MAJOR MISCONCEPTIONS ABOUT THE VESTAL MODEL

Having introduced our task model and shown how its
schedulability analysis is available “for free” from the liter-
ature on the standard mode-based Vestal model, we are going
to briefly examine to what extent its adoption settles some
criticisms voiced (e.g., in [9], [10], [11], [12], [13]) at the
standard mode-based Vestal model that inspired it. We also
use the opportunity to highlight why some other criticisms
are misframed.

A. Conflating the software assurance level of a task with the

notion of importance

In systems with criticality concerns, tasks are part of one
or more system components or functions, which in turn are
assigned assurance levels. In the automotive domain, these
are called Safety Integrity Levels (SILs) whereas in avionics,
Development Assurance Levels (DALs) are the equivalent

concept. Each task associated to a system component inherits
the latter’s SIL (DAL), with tasks belonging to multiple
components (or components that are not partitioned) inheriting
the highest SIL (DAL) thereof (see p. 10 in [16]). Tasks must
be developed in accordance with the rules defined for their
SIL/DAL.

As already mentioned, a major legitimate criticism (e.g.,
in [9]) on the mode-based Vestal model is that all tasks of
a higher-criticality system component (i.e., higher SIL) are
always given higher importance than the tasks of any lower-
criticality system component (lower SIL). In other words,
the importance of a task is treated as depending entirely on
its criticality level. In reality though, as the critics correctly
point out, some tasks of a higher-criticality component may
be unimportant tasks that simply “inherited” their higher
SIL due to their interaction/communication with other tasks,
whose failure would be catastrophic. Conversely, there may
be tasks in a lower-criticality component whose failure can be
catastrophic.

As explained, our proposed model decouples the concept of
criticality from that of importance. The system designer has
the flexibility to specify the importance of different tasks, in
accordance with the nature of the system, and decide on their
placement into the different modes of operation. Hence we
believe that this fully resolves the particular criticism.

5Quoting from the original AMC-max paper [15]: “For a possible alterna-
tive system model (in which all low criticality tasks, that have been released
but not yet completed, are allowed to consume up to C(L) before being
descheduled) this bound is tight.”
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B. Graceful degradation

Graceful degradation of the system has been recommended
in safety standards (e.g., IEC61508), whereby the system is
allowed to enter in a degraded mode with limited services
without compromising its safety. The conventional techniques
for the mode-based Vestal model aim for graceful degradation
by dropping the low-criticality tasks, under the implicit as-
sumption that these are the less important tasks. However, as
explained, importance is not just a function of the criticality
level, as it may also depend on the mode of operation and
application context. Hence, one valid criticism is that this is a
flawed attempt at graceful degradation.

Our proposed model allows the system designer to define
a degradation policy based on the importance of each task,
irrespective of its criticality and mode of operation. The system
designer can thereby specify which tasks are to be dropped,
kept or added at each mode transition.

C. WCET estimates

It has been noted (e.g., in [10], [17], [11] that nowhere do
the safety standards foresee the existence of multiple WCET
estimates for the same task, and that this would bring into
question the compatibility of the mode-based Vestal model
with these standards. To this observation, we counter that (as
also noted in Section I) this is a terminological issue, even
for the standard mode-based Vestal model [15]. What in the
literature of the Vestal model are refered to as additional, non-
provably-safe “WCET estimates”, are in fact execution time

thresholds whose excedance triggers the switch to the next
mode. The consequence of setting such a threshold too high
or too low (by using an execution time estimation technique
that is, correspondingly, more/less conservative) is, respec-
tively, inefficient platform utilisation vs. greater likelihood
of triggering a mode change (which is also undesirable). It
is a design tradeoff, and both in the standard mode-based
Vestal model [15] and ours, nothing prevents the designer
from specifying a provably safe WCET estimate for a task
in all modes that it is part of. The fact that these estimates
tend to be conventionally called (simply) “WCETs” by the
people in the real-time scheduling community, obscures their
true nature. However, this usage simply follows from the fact
that they do behave like WCETs, when they are input into the
schedulability tests that the researchers construct.

As Baruah already noted [18], even if the standards do not
explicitly foresee the use of multiple execution time estimates
per task, they offer no technical arguments precluding their use
either, as part of a technique devised for proving the desired
safety guarantees for the system. Which is why he surmises
that objections to the use of multiple execution time estimates
“seem in large part to be a social and cultural problem, rather
than a technical one” [18].

D. Temporal and spatial isolation

The mixed criticality applications hosted on the same mul-
ticore platform can (in the absence of mechanisms preventing

this) interfere with each other on multiple shared channels, in-
cluding CPU, caches, memory buses, memory controllers and
I/O devices [19]. Many mitigation and prevention techniques
are proposed in the literature to eliminate or predictably reduce
the interference among applications of different criticality.
Several works already exist [20], [21], [22], [23], [24], [25],
[24], [26], [27], [28], [29], [30], [31], [32], [13], [33] on
ensuring temporal and spatial isolation. Some of these works
already explicitly assume the mode-based Vestal model while
the others can still work in its context. For instance, server-
based techniques can be used to ensure temporal isolation
at the CPU level [23]. The Cache Lockdown approach [34],
[35] proposed in the context of the SCE framework [22]
allows spatial isolation at the cache level. Similarly, the use
of MemGuard [20] (and memory access regulation in general)
allows for upper-bounding memory-access-related stalls and
integrating them into the scehedulablity analysis.

Recently, a concern has been raised [11] that a misbehaviour
in the minimum interarrival time of a task can affect the
temporal isolation of a mixed-criticality system. We believe
that further study is required within the context of the mode-
based Vestal model to address this challenge of variation in
the minimum interarrival time of a task. One way to deal with
this, entirely in accordance with the spirit of the mode-based
Vestal model, would be for such an inter-arrival time violation
to trigger a mode change, analogously as done with execution
times. Certainly, the literature contains works which consider
the change of interarrival time parameters in mixed-criticality
systems in different modes (e.g, [36]). Baruah also shares
our view that, rather than just execution times, the theory
pertaining to the Vestal model “could be used to deal with any
form of inherent uncertainty and nondeterminism with regard
to the run-time behavior of systems” [18].

E. Mode switch

In an industrial context, the term “criticality” refers to the
level of assurance (SIL, DAL or ASIL) applied in the software
development process of the safety-critical application. In the
standard mode-based Vestal model, the term is “overloaded” to
represent two additional concepts: the mode of operation and
importance of a task. The latter comes from the (contested)
assumption, in that work [15] that a task’s importance is
solely determined by its criticality. With respect to the former
“overloaded” meaning, when a system switches from mode
n to mode n + 1, this does not really mean that the tasks
change their criticality from criticality n to criticality n + 1;
it just refers to the transition in mode of operation. Despite
the confusing terminology, the criticality of any application or
task is not changed due to the mode transition.

Nevertheless, we recommend to other researchers in a-
cademia to use that term “mode of operation” rather than, e.g.,
“low system criticality” when refering to the mode, to avoid
any confusion. Moreover, the decoupling of criticality from
importance in our proposed model eliminates the concerns
about the misuse of the term “criticality” to indicate the
importance. Finally, it is worth emphasising that, in any case,
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this misuse of the term has no impact on the validity of the
existing analyses for the mode-based Vestal model.

V. CONCLUSION

We introduced a variant of the mode-based Vestal task
model for mixed-criticality systems, in order to address some
criticisms about the model and bridge the gap with current
industrial practice. Its main feature is the decoupling of
task criticality from task importance. The new model retains
the essence of its predecessor (run-time robustness and effi-
cient processor utilisation via flexible mode transition), and
it remains fully backwards compatible with all its existing
analyses. We also pointed out how this new model settles
the concerns voiced about Vestal’s mode-based model and its
terminology.

To conclude, although we have no intention of discouraging
anyone from exploring other techniques and paradigms, we
believe that any issues or points of concern pertaining to the
Vestal model, can be resolved in accordance with its spirit,
and do not necessitate a break from it. We intend to work
with others in the community in order to further refine the
Vestal model, to not only make it more nuanced with respect to
the current incarnations of the safety standards, but ultimately
also to influence the drafting of future standards. Remote as
this may seem today, it would not be that dissimilar to what
happened with fixed-priority scheduling, which took many
years and enormous effort by many people until it became
endorsed by the standards and established industrial practice.
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Abstract—In this paper, we propose a more realistic mixed-
criticality model, called the flexible mixed-criticality (FMC)
model, in which mode-switch of high-criticality tasks are indepen-
dent. In this new model, only the overrun task itself is assumed to
exhibit high-criticality behavior, while other high-criticality tasks
remain in the same mode as before. The guaranteed service levels
of low-criticality tasks are gracefully degraded with the overruns
of high-criticality tasks. We derive a utilization-based technique
to analyze the schedulability of this new mixed-criticality model
under EDF-VD scheduling. During run time, the proposed test
condition serves an generalized criterion for service degradation
of low-criticality tasks. Finally, we show the generalization and
dominance of FMC when compared to the existing EDF-VD
based scheduling.

I. INTRODUCTION

Mixed-criticality models are an emerging paradigm for the
design of real-time systems because of their significantly
improved resource efficiency. There is a large body of research
work on specifying and scheduling mixed-criticality systems
(see [2] for a comprehensive review). However, to ensure the
safety of high-criticality tasks, the classic MC model applies
conservative restrictions to the mode-switching scheme. In
the classic MC model, whenever any high-criticality task
overruns, all low-criticality tasks are immediately abandoned
and all other high-criticality tasks are assumed to exhibit high-
criticality behaviors. Although there has been some research
on solving the first problem, i.e., statically reserving a certain
degraded level of service for low-criticality execution, to our
knowledge, little work has been done to date to address the
second problem except for the recent published work [3].

In the work [1], we propose a flexible MC model (denoted
by FMC for short) on a uni-processor platform, in which the
two aforementioned issues are addressed in a combined man-
ner. In FMC, the mode switches of all high-criticality tasks are
independent. A single high-criticality task that violates its low-
criticality WCET triggers only itself into high-criticality mode,
rather than triggering all high-criticality tasks. In this manner,
FMC only requires to book part resources for overruned high-
criticality task, rathern than for all high-criticality tasks. More
importantly, low-criticality tasks can be adaptively penalized
according to run-time overrun workload, by which the system
workload can be balanced with minimal service degradation
for low-criticality tasks.

As the main contribution of the work [1] , we study the
schedulability of the proposed FMC model under EDF-VD

The work has been published in [1]
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Figure 1. Execution semantics of the FMC model.

scheduling. A utilization-based schedulability test condition
is derived by integrating the independent triggering scheme
and the adaptive service level tuning scheme. A formal proof
of the correctness of this new schedulability test condition
is presented. In addition, we explore the feasible region of
the virtual deadline factor for this new MC model. Finally,
we show the generalization and dominance of FMC when
compared to the existing EDF-VD based scheduling.

II. FMC MODEL AND SCHEDULABILITY ANASLYSIS

A. Flexible Mixed-Criticality Model

Now, we provide the definition of FMC model, which
extended from classic EDF-VD MC scheduling. The execution
semantics of FMC can be depicted as Fig. 1.
Execution Semantics:All tasks in � start in 0-level high-
criticality mode (i.e., low-criticality mode). As long as no
high-criticality task violates its CLO

i , the system remains in 0-
level high-criticality mode. When one job of a high-criticality
task that is being executed in low-criticality mode overruns its
CLO

i , this high-criticality task immediately switches into high-
criticality mode. All other high-criticality tasks still remain
in the same mode as before. At the kth transition point
(corresponding to time instant t̂k in Fig. 1), the execution
budget of every high-criticality task are updated as zki · cLO

i

to compensate the overrun of high-criticality tasks (zki 
zk�1
i  1). When the system detects an idle interval [4], [5],

the system will transition back into low-criticality mode.

B. Schedulability Analysis Results

The schedulability analysis of FMC requires to guarantee
the schedulability on low-criticality mode and high-criticality
mode, which are summerized in Thm. 1 and Thm. 2. In low-
criticality mode, the system behaviors in FMC are exactly the
same as in EDF-VD [6].
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Theorem 1: The following condition is sufficient to ensure
that EDF-VD can successfully schedule all tasks in low-
criticality mode:

uLO
LO +

uLO
HI

x
 1 (1)

In Thm. 2, we provide the answer to the question of how much
execution budget can be reserved for low-criticality tasks while
ensuring a schedulable system for mode transitions. Without
loss of generality, we consider a general transition case in
which the system transitions from (k�1)-level high-criticality
mode to k-level high-criticality mode.
Theorem 2: The system is in (k � 1)-level high-criticality
mode. For the kth mode-switching point t̂k, when high-
criticality task ⌧t̂k overruns, the system is schedulable at t̂k
if the following conditions are satisfied:

uk
LO  uk�1

LO +

uLO
t̂k

uLO
HI

(1� uLO
LO)� uHI

t̂k

(1� x)
(2)

zki  zk�1
i (8⌧i 2 �LO) (3)

where uLO
t̂k

and uHI
t̂k

denote low and high utilization, respec-
tively, for the high-criticality task ⌧t̂k that undergoes a mode
switch at t̂k.
Thm. 2 only provides scheduability test condition only for
a single transition. However, the feasibility of algorithms
that off-line determines whether a task set is schedulable by
FMC-MCL under arbitrary sequences of mode switches is not
known yet. Thm. 3 provides a system level scheduability test
condition for a task set.
Theorem 3: Given the mandatory utilization uman

LO , any x that
satisfies the following condition can guarantee that a feasible
solution as determined by Thm. 2 can always be found during
run time.

(1� x)(uLO
LO � uman

LO ) +
X

⌧i2�⇤
HI

�(⌧i) � 0 (4)

where �(⌧i) = uLO
i

uLO
HI

(1 � uLO
LO) � uHI

i and �⇤
HI = {⌧i 2

�HI |�(⌧i)  0}.

III. NEW RESULTS

In [1], the experiment results show FMC achieves almost
the same schedulability performance, but still be inferior to
EDF-VD. Now, we will show this inferiority can be fixed by
following new feasibility condition. At first, we show the old
feasibility condition in [1] is the same as the condition of
EDF-AD in [3]. This equivalence is shown in Thm. 4. Then,
based on similar observation in [3], we can also derived a new
feasibility condition which domains the regular EDF-VD, as
shown in Propo. 1.
Theorem 4: Given a task set with uman

LO = 0, then FMC is
schedulable if:

uLO
LO +

uLO
HI

x
 1 (5)

x · uLO
LO +

X

⌧i2�HI

max(
uLO
i

x
, uHI

i )  1 (6)

Proof. According to Thm. 3 in [1], the old feasibility
condition with uman

LO = 0 can be represented as:
(1� x)uLO

LO +
X

⌧i2�⇤
HI

�(⌧i) � 0 (7)

According to off-line step in FMC-EDF-VD, we determine
x as uLO

HI

1�uLO
LO

. Therefore, we have:

(1 � x)uLO
LO +

X

⌧i2�HI

min (
uLO
i

x
� uHI

i , 0) � 0 (8)

,(1 � x)uLO
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X

⌧i2�HI

(min (
uLO
i

x
, uHI

i ) � uHI
i ) � 0

,x · uLO
LO + uHI

HI  uLO
LO +

X

⌧i2�HI

min (
uLO
i

x
, uHI

i )

,x · uLO
LO + uHI

HI +
uLO
HI

x
�

X

⌧i2�HI

min (
uLO
i

x
, uHI

i )  uLO
LO +

uLO
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x
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(9)

,x · uLO
LO +

X

⌧i2�HI

✓
uHI
i +

uLO
i

x
� min (

uLO
i

x
, uHI

i )

◆
 1

According to max(a, b) = a+b�min(a, b), we have Eqn. (6).

⇤
Above, we have demonstrate FMC is equivalent to EDF-

AD. Now, we will present a new feasibility condition to show
FMC is equivalent to EDF-AD-E in [3].
Theorem 5: Given a task set with uman

LO = 0, then FMC is
schedulable if:

uLO
LO +

X

⌧i2�HI

min(
uLO
i

x
, uHI

i )  1 (10)

x · uLO
LO + uHI

HI  1 (11)

Proof. According to Lemma. 6.3, Eqn. (10) ensures the low-
criticality schedulability. By Eqn. (8), we have:

x · uLO
LO + uHI

HI  uLO
LO +

X

⌧i2�HI

min (
uLO
i

x
, uHI

i )  1 (12)

⇤
According to [3], EDF-AD-E dominates EDF-VD in terms

of MC-schedulability. FMC is equivalence to EDF-AD-E.
Therefore, FMC dominates EDF-VD.
Property 1: FMC dominates EDF-VD in terms of MC-
schedulability.
Generalization: Compared to [3] which only targets on task
dropping-off strategies, the work [1] provides an general
criterion for run-time service level tuning. By checking the
conditions in Thm. 2, one can determine how much utilization
can be reserved for low-criticality task execution to compen-
sate for the overruns. In general, various tuning strategies can
be specified by the user as long as the condition in Thm. 2 is
satisfied during run time. Task dropping-off strategy used in
[3] can be considered a special case by assigning zki = 0 for
dropped tasks.
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Comparative Analysis of Scheduling Strategies for
Heterogeneous Avionics Applications

A. MIFDAOUI, A. FINZI, F. FRANCES and E. LOCHIN
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Abstract—A homogeneous avionic communication architecture
to interconnect different avionics domains may bring signifi-
cant advantages, such as easier installation and maintenance
in addition to reduced weight and costs. This homogeneous
communication architecture needs to support heterogeneous
applications, where safety-critical and best effort traffic co-
exist. In this paper, we assess the pros and cons of the most
relevant scheduling strategies supporting heterogeneous appli-
cations versus the main avionics requirements. Furthermore,
we conduct a quantitative comparative analysis of the most
promising solutions guaranteeing the main avionics requirements
through a representative avionics case study. Results show that a
recent shaper in Time Sensitive Networks is a promising solution
in terms of performance and complexity.

Index Terms—TSN, BLS, AFDX, DRR, NP-SP, avionics, QoS,
Schedulers.

I. INTRODUCTION

Avionics is a field that moved from point-to-point trans-
missions to high speed networks. However, this field slowly
evolves due to the stringent safety requirements and the aircraft
long life expectancy, around 25 to 30 years. The comparison
of this lifespan against other networking fields is an interesting
one. For instance, the last 30 years have seen the development
of main stream Internet, from low rate 64Kbit/s to high speed
Gigabit fiber connections. Concerning mobile networks, a
new generation appears approximatively every 9 years. Hence,
between the day in 1990 when an airliner entered into service
to its retirement in 2015, a consumer download link was
multiplied by 15,000 and 3 mobile network generations were
developed. This highlights the stark difference between the
closed avionics world, and the Internet and mobile open world.

However, linkages exist between these communities: the
newest avionics network, the Avionics Full-DupleX Ethernet
(AFDX) [1] is based on a technology developed for the Inter-
net, the Switched Ethernet. The low cost and maturity, after
decades of use in industrial markets, are the main advantages
of this technology. There are still many technologies from
the open world that could be used for avionics networks.
In particular in the open world, there is a large number of
scheduling strategies to multiplex heterogeneous flows within
a network. In this paper, we analyse the most relevant ones
to assess their potential use to define an avionics network to
support heterogeneous avionics applications.

With the maturity and reliability progress of the AFDX
after a decade of successful use, a homogeneous avionic
communication architecture based on such a technology to
interconnect different avionics domains may bring significant

advantages, such as easier installation and maintenance in
addition to reduced weight and costs. This homogeneous
communication architecture, based on the AFDX technology,
needs to support heterogeneous applications, where safety-
critical and best effort traffic co-exist. Hence, in addition to
the current AFDX traffic profile, called Rate Constrained (RC)
traffic, at least two extra profiles have to be handled. The
first, denoted by Safety-Critical Traffic (SCT), is specified to
support flows with hard real-time constraints and the highest
criticality, e.g., flight control data; whereas the second is for
Best-Effort (BE) flows with no delivery constraint and the
lowest criticality, e.g., In-Flight Entertainment traffic.

Hence, we start by presenting the avionics context through
the evolution of avionics network and the main avionics
requirements in Section II. Afterwards, we assess the pros and
cons of the most relevant scheduling strategies supporting het-
erogeneous applications versus the main avionics requirements
in Section III. Finally, we conduct a quantitative comparative
analysis of the most promising solutions guaranteeing the main
avionics requirements through a representative avionics case
study in Section IV.

II. AVIONICS CONTEXT

AFDX 
Interconnect

Avionics 
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End
System

Avionics 
Subsystem

End
System
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System

Controllers

Sensors

Actuators

Controllers

Sensors
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CAN/ARINC429

CAN/ARINC429
Avionics Computer System

Avionics 
Computer 
System

Fig. 1: Current Avionics Network

As shown in Figure 1, the current avionics network, respon-
sible for flight control, cockpit, engines and fuel & landing
gears, consists of a high-rate backbone network, the AFDX
[1], to interconnect critical subsystems. Moreover, some low-
rate data buses, e.g., CAN [12] or ARINC 429 [7], are still
used to handle some specific avionics domains, such as the
I/O process and the Flight Control Management.

The AFDX [1] network is based on Full Duplex Switched
Ethernet protocol at 100Mbit/s, successfully integrated into
new generation civil aircraft like the Airbus A380. This tech-
nology succeeds to support the important amount of exchanged
data due to policing mechanisms added in switches and the
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Virtual Link (VL) concept. The latter gives a way to reserve a
guaranteed bandwidth to each traffic flow. The VL represents
a multicast communication which originates at a single End-
System and delivers packets to a fixed set of End-Systems.
Each VL is characterized by: (i) BAG (Bandwidth Allocation
Gap), ranging in powers of 2 from 1 to 128 milliseconds,
which represents the minimal inter-arrival time between two
consecutive frames; (ii) MFS (Maximal frame size), ranging
from 64 to 1518 bytes, which represents the size of the largest
frame that can be sent during each BAG. The current AFDX
enables the use of both scheduling strategies: First Come First
Served (FCFS) and Strict Priority (SP).

The CAN bus [12] is a 1 Mbit/s data bus that operates
according to an event-triggered paradigm where messages are
transmitted using a priority-based access mechanism. CAN
bus works using a producer/consumer communication scheme
based on unique identifier per message type. The CAN mes-
sages are broadcasted on the bus, then each CAN equipment
will filter the consumed data based on the CAN identifier.
The collisions on the bus are resolved following a CSMA/CR
protocol (Carrier Sense Multiple Access/ Collision Resolution)
thanks to the bit arbitration method.

The ARINC429 [7] is a 100 Kbit/s data bus with a point-
to-point protocol. It is a mono transmitter multi receivers data
bus with unidirectional communication which provides high
reliability at the cost of wire weight and limited data rates.

Although this architecture reduces the time to market,
it conjointly leads to inherent heterogeneity and new chal-
lenges to guarantee the real-time requirements. To enable a
homogeneous architecture based on AFDX technology, we
identify herein the main avionics requirements and challenges
to compare the different scheduling strategies and select the
most appropriate one to support heterogeneous flows on the
AFDX.

The two main considered avionics requirements are as
follows:

• Predictability: the impact of a system on an other is
known and bounded. The communication architecture
must behave in a predictable way, where the extended
AFDX has to guarantee bounded latencies respecting the
temporal constraints of the heterogeneous traffic.

• Modularity: this requirement is related to the flexibility
and exchangeability of software and hardware compo-
nents. An important step towards enhancing the avionics
system modularity has been fulfilled with the adoption
of the IMA approach [17], i.e., common elementary
components can be configured to fit different avionic
applications. This feature aims to minimise the (re)
configuration and readjustment effort to facilitate system
maintenance and its progress over the years. For instance,
the event-triggered paradigm of the AFDX is favoring
such a requirement.

Moreover, we need to deal with the main challenge of
enforcing the Quality of Service (QoS) features, while limiting
the impact of the highest priority traffic on the current AFDX
traffic and the implementation complexity. These challenges
will be denoted by Fairness, and Complexity along this paper.

III. QUALITATIVE ANALYSIS OF DIFFERENT SCHEDULING
STRATEGIES

Various solutions have been proposed in the literature to
support heterogeneous applications in embedded systems and
particularly in avionics. The first proposed solution is the
simplest one, based on Strict Priority like the one specified in
the AFDX. Overtime, new solutions with increased complexity
were proposed, such as the ones defined in Audio Video
Bridging [11] and Time-Sensitive Networking [16].

To quantify the (re)configuration effort needed by an al-
ternative avionics communication architecture in comparison
to the current AFDX standard, the considered communication
paradigm is of utmost importance since the modularity level
of a solution highly depends on such a paradigm. The event-
triggered paradigm is known as highly flexible and facilitates
the system reconfiguration, but it infers at the same time
an indeterminism level and needs further proofs to verify
the predictability requirement. On the other hand, the time-
triggered paradigm is highly predictable, but presents some
limitations in terms of system reconfigurability.

In this section, we will detail the different scheduling
strategies and assess their potential ability vs the avionics
requirements.The different solutions can be categorized
according to the required communication paradigm, i.e.,
mainly time-triggered or event-triggered.

Non-Preemptive Strict Priority Scheduler The Non-
Preemptive Strict Priority (NP-SP) scheduling strategy is the
simplest QoS implementation with very limited complexity.
Each queue has a defined priority and the scheduler dequeues
the first frame of the eligible queue (a queue with enqueued
traffic) with the highest priority. This scheduler is defined
in the AFDX standard [1]; and due to the leaky bucket
shapers in the end-systems and policers in the switches, NP-SP
guarantees the predictability requirement.

NP-SP is compliant with an event-triggered paradigm,
which allows a high modularity level, but it is a well-known
as an unfair scheduler [18].

GPS-like Schedulers–Deficit Round Robin
The Generalized Processor Sharing (GPS) is an idealized

scheduling algorithm that achieves perfect fairness: the
bandwidth is shared depending on fixed weights. Many
algorithms have been developed to come as close as possible
to the GPS, such as the Weighted Fair Queuing (WFQ)
[4] or Weighted Round Robin (WRR) [19] and Deficit
Round Robin (DRR) [9]. Ordinary round-robin servicing of
queues can be done in constant time. With WRR, the usual
implementation consists in setting a number of frames that
can be consecutively sent for each queue. The major problem,
however, is the unfairness caused by possibly different packet
sizes used by different flows. This flaw can be removed
by using a counter to keep track of traffic transmitted as
with the Deficit Round Robin (DRR). Nonetheless, these
schedulers necessitate a virtual clock, which increases
their implementation complexity. In [9], an AFDX network
implementing the DRR has been specified and studied.
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Results have shown the good performances of the proposal
in terms of predictability and fairness, while increasing the
implementation complexity. Moreover, like NP-SP, DRR
offers a high modularity level due to its compliance with an
event-triggered paradigm.

Audio-Video Bridging–Credit Based Shaper
In recent years, there has been a strong interest in the

IEEE 802.1 Audio/Video Bridging (AVB) protocol, which
provides end-to-end delay guarantees in Ethernet networks.
AVB specifies a credit-based shaping (CBS) algorithm for real-
time (RT) traffic classes A and B. Each shaped class has a
credit-counter, which is replenished at a constant rate (the so-
called idle slope) and consumed at the rate allowed by the port
(the send slope) when data on the specific class is transferred.
When the queue is empty, the credit immediately returns to
0. The different classes are scheduled using a strict priority
scheduler, with the CBS preventing the starvation of lower
priorities and giving bandwidth guarantees, which are good
properties for mixed-criticality applications.

Concerning the predictability of CBS, the different classes
are isolated from each other thanks to the counter and their
associated blocking effect. However, it has been shown in
[2] that the impact of the blocking effect of the AVB on the
latency is high, which induces a medium predictability level
for this shaper. However, the worst-case latency of unshaped
lower priorities is improved due to the shaping of classes
A and B, which fulfills the fairness challenge. The main
drawback of the CBS is that frames cannot be transmitted if
the credit is below 0, no matter the state of the other queues.
This fact can cause unnecessary delays if other queues are
empty. This issue has been fixed by the TSN [16] task group
through different shapers.

Time Sensitive Networking–Time Aware Shaper
TAS[15] uses time-driven scheduling to manage link access

between traffic classes, which makes it a good candidate
for heterogeneous traffic flows. For each traffic class, the
frames are transmitted according to a gate schedule at each
output port: it allows frames to pass when opened, and it
blocks frames when closed. The different gate schedules are
programmed offline, and multiple gates can be opened at the
same time. Then, the selected frames are arbitrated according
to their priority levels. To prevent frames transmission when
the gate is closed, TAS defines guard bands. From the start of
a guard band until the gate is opened, no new frames of the
corresponding class are allowed to start transmission.

Due to the gate schedule, TAS guarantees a high
predictability level, but the modifications are propagated to
all flows. This fact limits the TAS modularity, while inferring
high implementation complexity. Additionally, when lower
classes gates are opened, they are scheduled using a strict
priority, which implies a low fairness.

Time Sensitive Networking–Peristaltic Shaper
The Peristaltic Shaper (PS) [14] uses a global time divided

in odd and even phases to manage different traffic classes. If
a shaped frame arrives in an odd (resp. even) phase, it can not

be sent before the start of the next even (resp. odd) phase. The
idle time can be used by other priorities. The Peristaltic Shaper
has been proposed by the same task group as TAS. Hence, they
have often been studied together and similar work has been
done.

Similarly TAS, the use of a global time in PS implies a high
predictability level but a negative impact on its modularity
and implementation complexity: a flow modification can
impact the calculation of odd and even phases not only along
its path, but also on other flows paths. However, due to
the initial waiting time caused by the odd and even phases,
lower priority flows may be sent more quickly than under
Static Priority scheduler, which makes Peristaltic Shaper an
interesting solution in terms of fairness.

Time Sensitive Networking–Urgency-based Scheduler
The main idea of the Urgency-based Scheduler (UBS) [13]

is a separation between per flow and per queue. The conceptual
separation of per flow queue and state provides per flow
shaping at every hop for flow aggregated in the queues. This
concept is called interleaved shaping. This significantly
reduces the algorithmic complexity by limiting the number
of required queues. Hence the first step when a new frame
arrives in the output port is to select the appropriate queue
depending on the priority of the flow and its ”urgency” as
decided by an interleaving algorithm.

This scheduler is still new, so little research has been done
yet. In [13], the scheduler is presented, simulations and timing
analysis are performed. The results show high link utilisation
and low delays. They also conclude that the implementation
complexity is low, in part because they assume the queue
selection process is already implemented in the switches
thanks to the standardisation of 802.1Qci-Per-Stream Filtering
and Policing. But, while implementing it in higher layer is
simple, implementing at the hardware level is much more
complex.

Time Sensitive Networking–Burst Limiting Shaper
Presented in [8], the BLS is a credit-based shaper that

has been characterized in [8] by an upper threshold, LM , a
lower threshold LR, such as 0 6 LR < LM , and a reserved
bandwidth, BW . Additionally, the priority of a queue shaped
by BLS can vary between a high and a low value. The low
value is usually below the lowest priority of unshaped traffic.

BLS is used with a strict priority scheduler, where BLS
modifies the priority seen by the SP depending on a credit
counter. Hence, depending on the priority value, the shaped
frames can be blocked or not by other classes. However, no
matter the state of the credit, if a frame is the first of the
queue with the highest priority among the eligible queues,
then it will be transmitted. Thus, contrary to CBS, the BLS is
a non-blocking shaper, which is a large improvement of the
predictability guarantees.

The priority change feature enables the BLS to reserve
bandwidth for the shaped queue. This fact induces a low
implementation complexity; and also improves fairness in
comparison to SP, since it limits the bandwidth available to
the shaped queue.
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A. Discussion

In this section, we assess the pros and cons of the different
scheduling strategies vs the four avionics requirements and
challenges, to select the most promising ones:

• predictability: thanks to the leaky bucket shapers in the
AFDX end-systems and the policers in the switches, all
the presented solutions can achieve the necessary de-
terminism and isolation. However, AVB/CBS sometimes
blocks frames when the transmission link is free, causing
unnecessary delays;

• modularity: the solutions compliant with event-triggered
paradigm, i.e., NP-SP, DRR, CBS, UBS and BLS, better
fulfill the modularity criterion, contrary to time-triggered
solutions like TAS and PS;

• fairness: as aforementioned, there are four solutions
fulfilling the fairness constraint: DRR, CBS, PS and BLS;

• Complexity: time-triggered solutions like TAS and PS
necessitate the implementation of a complex time syn-
chronisation and induce high complexity; Whereas, CBS,
BLS and UBS can be used independently from the
synchronisation aspect of AVB and TSN. Nevertheless,
UBS induces higher complexity.

The considered solutions vs the main avionics require-
ments and challenges are illustrated in Table I. Hence, the
most promising solutions in the avionics context are DRR
and TSN/BLS. The quantitative analysis of these scheduling
strategies performance will be conducted, with reference to
the already specified solution in the AFDX standard NP-SP
scheduling strategy.

Solutions references Requirements
NP-SP [18] XX XX X XX

GPS/DRR [9] XX XX XX X
AVB/CBS [2] X XX XX XX
TSN/TAS [15] XX X X X
TSN/PS [14] XX X X X

TSN/BLS [8] XX XX XX XX
TSN/UBS [13] XX XX XX X

Predictability
Avionics requirements Modularity

and challenges Fairness
Complexity

TABLE I: Existing solutions vs avionics requirements and
challenges

IV. QUANTITATIVE ANALYSIS OF DIFFERENT
SCHEDULING STRATEGIES

In this section, we conduct performance analysis of the
most promising scheduling strategies (BLS and DRR) when
incorporated in the AFDX, to evaluate their efficiency to
support heterogeneous traffic profiles, in comparison to the
current AFDX solution (implementing SP scheduler). First, we
describe our representative avionics case study and the testing
scenarios. Afterwards, we assess the timing performance and
complexity of the selected solutions, in comparison to the
current AFDX.

A. Avionics Case Study

Our case study is a representative avionics communica-
tion architecture of the A380, based on a 1-Gigabit AFDX1

backbone network, which consists of 4 switches and 64
end-systems as shown in Fig. 2 (a). The different traffic
profiles generated by each end-system are described in Tab.
II. Each traffic class j 2 {SCT,RC,BE} is characterized by
(MFSj , BAGj , Deadlinej). Figure 2 (b) shows the traffic
communication patterns between the source and the final
destinations of a given flow. Each circulating traffic flow on
the backbone network is a multicast flow with 16 destinations,
and crosses two successive switches before reaching its final
destinations. The first switch in the path receives traffic from
16 end-systems to forward it in a multicast way to its two
neighboring switches. Afterwards, the second switch in the
path, which receives traffic from the two predecessor switches,
forwards the traffic in its turn to the final end-system.

The main considered performance metrics are:
(i) The maximum utilisation rate of each traffic class,
that can be sent on the extended AFDX architecture while
respecting the schedulability condition. This metric enables
the scalability analysis of the extended AFDX with the new
scheduling strategies BLS and DRR, in comparison with the
current one.
(ii) The delay bounds of SCT and RC classes to prove the
predictability of the extended AFDX and analyse its impact on
the system timing performance, in comparison with the current
AFDX implementing SP. It is worth noting that since the BE
does not have a deadline, and its largest impact on the other
priorities is the transmission time of a maximum sized frame,
then the timing performance of this class is not detailed herein.
The delay bounds are computed based on Network calculus
[10], and particularly the proved results in [5] for BLS and
[3] for DRR.
(iii) The computation time to tune the parameters of each
scheduling strategy to improve as much as possible the system
performance when using the tuning methods described in [6].

Priority Traffic Class MFS BAG Deadline
(Bytes) (ms) (ms)

High SCT 64 2 2
Medium RC 320 2 2

Low BE 1024 8 none

TABLE II: Avionics flow Characteristics

The testing scenarios are described in Table III. As it can
be noticed, the principle of scenario 1 (resp. scenario 2) is to
fix the utilisation rate of RC class URRC (resp. SCT class
URSCT ) at 20% and vary the SCT (resp. RC) utilisation rate
to assess the impact of increasing network congestion on the
timing performance. The variation of the utilisation rate of a
class j is obtained through increasing the number of generated
traffic flows within each end-system, nes

j . Thus, the maximum
utilisation rate is equal to URj(%) = Cj

C with Cj the capacity
used in the bottleneck by the aggregate traffic of class j 2
{RC,SCT}, Cj = 16 · nes

j · MFSj

BAGj
, and C the transmission

capacity of the network (1Gbit/s).

1The 1-Gigabit version of the AFDX is under specification.
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Fig. 2: Representative AFDX network: (a) Architecture; (b)
Traffic Communication Patterns

Scenarios Scenario 1 Scenario 2
(URRC ;URSCT )(%) (20; [1..80]) ([1..80]; 20)

(nes
RC ;nes

SCT ) (10; [1 : 4 : 110]) ([1 : 2 : 39]; 47)

TABLE III: Testing Scenarios 1 and 2

B. Numerical Results

The results of scenarios 1 and 2 are illustrated in Fig.3 and
Fig.4, respectively.

First, concerning the maximum bottleneck utilisation rates:
• in Figure 3, we note that the maximum bottle-

neck SCT utilisation rate is 27% with the current
AFDX (AFDX+SP), 35% with DRR-compliant AFDX
(AFDX+DRR) and 41% with the extended AFDX incor-
porating BLS (AFDX+BLS).

• in Figure 4, the maximum bottleneck RC utilisation rate
is 33% with SP, 38% with DRR and 41% with BLS.

Hence, incorporating BLS in the AFDX improves the max-
imum utilisation rate of RC, compared to both SP (up to 24%)
and DRR (up to 17%).

Secondly, concerning timing performance and delay bounds,
in Figure 3(b), the RC delay bounds with BLS are lower
than the delay bounds with either DRR and SP. In particular,
the BLS improves the RC delay bound up to 77% compared
to the current AFDX with SP, and up to 73% compared to
DRR-compliant AFDX (when the SCT and RC deadlines are
fulfilled). The same behaviour is visible in Figure 4(b): the
BLS improves the RC delay bounds up to 89% compared to
SP, and up to 38% compared to DRR (when the deadlines are
fulfilled).
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Fig. 3: Testing Scenario 1 Results: (a) SCT delay bounds; (b)
RC delay bounds

The improvements of the RC delay bounds and schedulabil-
ity with the BLS and DRR scheduling strategies in AFDX, in
reference to the current AFDX (SP), are illustrated in Table IV.
We have also computed the computation times to tune the
parameters of BLS and DRR to achieve the best performance.

First, we can see that the BLS and DRR improve both the
RC delay bounds and the maximum utilisation rates of SCT
and RC, compared to SP. We note that the positive impact is
much stronger under the BLS than under the DRR. Moreover,
we can see that the computation time is multiplied up to 6
times under DRR, in reference to BLS.

improvement compared to SP(%) computation times (s)
Scheduler maximum RC delay at maximum

URbn
SCT = 33% URbn

RC = 28% URbn
SCT URbn

RC SCT RC
BLS 18 22 33 21 57 9
DRR 18 16 26 15 395 58

TABLE IV: Comparing Scheduling Strategies

From these scenarios, we can conclude that with an
accurate parameter tuning, the extended AFDX implement-
ing BLS has a large positive impact on both SCT and
RC, compared to the current AFDX implementing the SP
scheduler or DRR-compliant AFDX, while inducing low
complexity.
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Fig. 4: Testing Scenario 2 Results: (a) SCT delay bounds; (b)
RC delay bounds

V. CONCLUSIONS

In this paper, we have assessed the most relevant existing
scheduling strategies vs the main avionics requirements, to
support heterogeneous applications on the AFDX network.
Afterwards, we have conducted a quantitative performance
analysis of the most promising solutions, i.e., BLS and DRR,
in reference with the current one (SP) through a representative
avionics case study. Results show the noticeable performance
enhancement of the current AFDX traffic (RC) in presence
of the highest priority one (SCT) under BLS, with reference
to the current AFDX (SP) and DRR, while keeping a low
complexity.
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Abstract—Packet classification is an indispensable yet 
challenging functionality of real-time data network. Due to the 
high-speed requirement of network devices, hardware using 
TCAMs has been the dominant implementation of packet 
classification in industry. Despite its capability for line-speed 
queries, TCAM is very power hungry and capacity inefficient. 
Although SmartPC, a recent proposed energy-efficient TCAM 
scheme, was recommended to reduce power consumption by 
constructing a pre-classifier to activate TCAM blocks 
selectively, its bottom-up based expansion mechanism 
generated a large number of general rules and memory holes, 
leading to significant memory overhead. In this paper, we 
propose EcoCAM, a combination technique of decision-tree 
and TCAM, which exploits the potentiality of algorithmic and 
architectural packet classification. To eliminate rule 
replication, we employ the optimized FiCuts in CutSplit to 
build decision-tree for the separated subset with similar 
characteristics. Since the capacity of TCAM block and the 
number of rules in tree nodes are finite, we construct the 
count-based tree corresponded to TCAM entries. Finally, using 
a top-down approach to traverse the tree and build a pre-
classifier brings power and storage efficiency. Experimental 
results show that our algorithm achieves 97.8% power 
reduction and 5.3% storage overhead on average. 

Keywords—Packet Classification, TCAM, Decision Tree, 
Power Reduction, Memory Efficiency 

I. INTRODUCTION 
Packet classification is the crucial technique of modern 

network routers that provides various network services, such 
as access control, securities, traffic monitoring, quality of 
service (QoS) and virtual private network (VPNs). The roles 
of packet classification is to find out a matching rule with the 
highest priority from a predefined classifier for each 
incoming packet and take an action to the packets. Since 
high-speed packet classification is the bottleneck of real-time 
data network, this problem has drawn a lot of researchers’ 
attention in the past two decades. 

There are many packet classification techniques proposed, 
which can typically be divided into two patterns: algorithmic 
and architectural[1][2][3]. Algorithmic solutions, such as 
decision-tree[4][5][6][7][8][9], decomposition[10][11][12] 
and tuple space[13][14][15], have drawn wide-spread 
attention because of their flexibility and scalability. Among 
them, decision-tree is considered the most promising solution 
due to the requirements of multi-field packet classification 

and feasibility of combining with other techniques. As far as 
we know, a plethora of decision-tree algorithms has been 
exhibited. Using a geometric view, decision-tree partitions 
the searching space into multiple subspaces. There are two 
major partitioning mechanisms to construct a decision-tree: 
equal-size cutting and equal-dense splitting. HiCuts[4] and 
HyperCuts[5], the cutting-based approaches, take advantage 
of local optimizations to cut the searching space, but they are 
not applicable for large rule sets because of sharply growing 
rule replication. After that, EffiCuts[7] employs the subset 
partitioning techniques to achieve significant reduction of 
storage overhead, however, a K-field classifier may be 
separated into 2K subsets at most. On the other hand, 
HyperSplit[6], an outstanding splitting method, divides the 
searching space into varying subspaces containing a similar 
number of rules. The state-of-the-art technique, CutSplit[9], 
exploits the combination of cutting and splitting schemes and 
realizes less storage overhead and fast updates. Although 
above approaches have made great achievements in 
performance and storage, line-speed requirement is still a 
challenging problem, which can be lightly implemented by 
hardware-based methods. 

Ternary Content Addressable Memories (TCAMs) based 
techniques are the most popular architectural approaches in 
industry. TCAMs accomplish line-speed packet classification 
by paralleling lookups the rule set in a single pass. However, 
they are not only expensive, but also area-inefficient and 
power-hungry. To address these problems, numerous  
methods have been put forward, such as classifier 
minimization[16][17], range encoding[18][19][20], circuit 
modification[21] and pre-classifier[22][23][24][25][26][27]. 
Among them, the structure of pre-classifier enables TCAM 
to selectively activate a small number of TCAM blocks by 
establishing index TCAM, resulting in the reduction of 
power consumption. Based on this characteristic, Extended 
TCAM[21] employs circuit modification to convert range to 
prefix and constructs corresponding index entries to reduce 
energy consumption. But circuit modification is undesirable 
since TCAM is widely used in industry. Recently, more 
efficient algorithms to reduce power consumption have been 
proposed, such as TreeCAM[23], which combines decision-
tree and TCAM to attain fast updates and less energy 
consumption but brings about extra storage overhead. 
SmartPC[24] employs a bottom-up algorithm to construct a 
pre-classifier by grouping rules in the same area into TCAM 
blocks. However, such a local optimal pattern generates 
plenty of general rules and holes in TCAM blocks. The state-
of-the-art technique, GreenTCAM[26], builds the pre-
classifier by projecting rules into different dimensions to 
select the range with similar numbers of rules, which 
improves energy and memory utilization compared with 
SmartPC. But it introduces an additional SRAM structure 
and brings about rule replication. 
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In this paper, we propose the eco-friendly TCAMs 
(EcoCAM), an efficient scheme combining decision-tree and 
TCAMs, which enhances power reduction and storage 
utilization simultaneously. The combination of algorithmic 
packet classification (using decision-tree) and architectural 
packet classification (using TCAM) techniques is beneficial 
for taking advantage of the relationship among rules to 
reduce energy consumption and improve storage efficiency 
from a global perspective. At first, we partition the rule set 
into subsets in which the rules have similar characteristics. 
Since the capacity of every TCAM block is finite, we use the 
subset to construct a count-based tree by mapping decision-
tree to correspond to the entries of every TCAM block. 
Finally, we employ a greedy-based heuristic algorithm to 
traverse the count-based tree top-down, arrange the tree 
nodes into TCAM blocks.  

Using the rule sets up to 100k entries generated by 
ClassBench[28], we evaluate our algorithm performance in 
power reduction and storage overhead. Compared with 
SmartPC and GreenTCAM, EcoCAM further enhances 
power reduction with an average of 97.8% and achieves 
merely 5.3% storage overhead on average. Moreover, we 
implement SmartPC for an adequate comparison. 

The rest of the paper is organized as follows. In Section 
Ⅱ, we briefly introduce the problem of packet classification 
and summarize the related work about decision-tree and 
TCAM-based solutions. Section Ⅲ presents the technical 
details of EcoCAM. Section Ⅳ provides experimental results. 
Finally, Section Ⅴ draws conclusion of this paper. 

II. BACKGROUND AND RELATED WORK 
Packet classification is performed to find a matching rule 

with the highest priority from a packet classifier. A classifier 
contains a set of rules with a fixed number. Typically, a rule 
R is consist of 5-tuple and an action to be taken when a 
packet matches. The 5-tuple includes source IP address (SA), 
destination IP address (DA), source port number (SP), 
destination port number (DP) and the protocol (Prot). Rule 
field values could be exact value, prefix or range, which 
means there are three kinds of matches: exact match, prefix 
match or range match. When a packet arrives, packet 
classification needs to compare the header of the packet with 
a predefined classifier to find out the best match and take 
action. Although a plethora of algorithmic and architectural 
approaches has been proposed, packet classification remains 
a challenging problem. Among them, decision-tree and 
TCAM are the most representative software-based and 
hardware-based solutions. 

A. Decision-tree based schemes 
In essence, decision-tree schemes make use of the 

geometric perspectives (as shown in Figure 1) of the packet 
classification problem to reduce the searching space by 
constructing a tree. The whole searching space containing all 
rules is covered by the root node. With the increase of depths, 
the searching space for tree nodes narrows. At the end nodes 
of decision-tree, linear search algorithm is efficient enough 
in a smaller number of rules. EffiCuts[7], as a famous 
cutting-based scheme, proposes a significant scheme based 
on rule sets partitioning to reduce rule replication 
dramatically. However, A K-field classifier could be 
separated into at most 2K subsets, leading to lots of memory 
access. Later, HybridCuts[8] realizes less memory accesses 

compared with EffiCuts by adopting a single individual field 
(SA or DA) to separate rules rather than all K fields; but the 
worst-case performance is unbounded because of the 
utilization of HyperCuts[5]. What’s more, HybridCuts 
proposes a cutting-based algorithm Fixed intelligent Cutting 
(FiCuts) which brings about no rule replication in cutting 
phase. As an improvement, the state-of-the-art technique 
CutSplit[9] optimizes FiCuts to support multiple field cutting 
with the same effects as HybridCuts and employs an 
ingenious method to incorporate cutting and splitting, 
achieves less storage overhead and fast updates. Even so, 
line-speed requirement is still the primary bottleneck of 
decision-tree based solutions. 

B. TCAM based schemes 
TCAMs have become the de facto standard device of 

hardware-based packet classification because of the 
requirements of high performance routers and switches. 
However, high power consumption restricts its developments. 
To solve this problem, TCAM vendors create a partitioning 
mechanism that only activates a small number of TCAM 
blocks associated with the input bits, called pre-classifier. A 
typical pre-classifier architecture is shown in Figure 2. 

Extended TCAM[21] employs circuit modification to 
support range transformation and construct index entries, 
only segmental TCAM blocks associated with the index will 
process when packets arrive. But circuit modification is 
almost impossible to commercialize limited by existing 
market volume. CoolCAMs[22], a TCAM-based IP lookup 
approach, exploits the features of IP prefix tree based on 
longest prefix match to build index entries by multiple sub-
tree splitting, which achieves a huge number of power 
reduction and memory utilization. However, the narrow 
application of IP lookup constraints its developments. 

Lately, more efficient TCAM-based approaches have 
been proposed. For example, TreeCAM[23], a typical 
combination technique of decision-tree and TCAMs, builds 
decision-tree in which the leaf nodes containing the number 
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Figure 2. Architecture of TCAM pre-classifier 
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of rules satisfied a TCAM sub-array and stores these nodes 
in nearby area of TCAMs, resulting in fast updates and 
energy reduction. But it brings rule replication and memory 
inefficiency. SmartPC[24] proposes a two-stage algorithm 
based on bottom-up approach: at first, a packet is classified 
by a pre-classifier that identified the TCAM block; only the 
identified block along with a few general blocks are activated 
and searched in parallel. Although its power consumption is 
reduced 88% on average, general rules produced by SmartPC 
have become primary restriction of energy reduction, which 
have to be searched for each incoming packet. Besides, 
SmartPC may produce holes in blocks, which waste a lot of 
TCAM capacity. As an improvement, GreenTCAM[26] 
attempts to reduce rule replication by partitioning rules into 
subsets depending on SA and DA field, then projects rules to 
attain a smaller subset with a number of rules nearly to the 
entries of TCAM block. Although GreenTCAM has better 
performances in power consumption and storage overhead, it 
brings about rule replication and introduces an extra SRAM 
structure to configure index TCAM since TCAM does not 
support range storage. 

III. THE PROPOSED ALGORITHM 
In this section, we first briefly summarize the challenges 

of combining decision-tree and TCAM and then put forward 
some ideas. On this basis, we try to construct a count-based 
tree via mapping decision-tree. Furthermore, we propose two 
cutting algorithms based on the count-tree to construct pre-
classifier. 

A. Challenges & ideas 
First, we present some definitions to describe our 

algorithm adequately, as follows: 

x nrules: the rule number of tree node. 

x binth: the threshold of leaf node. 

x block-size: the capacity of one TCAM block. 

x general block, general rule and special block: as 
mentioned in SmartPC. 

Although TCAM is the most popular hardware-based 
packet classification approach in industry, power 
consumption has become the primary constraint of its 
development. When it comes to designing a power-saving 
TCAM-based solution, there are two considerable points: 
general rules and storage efficiency. General rules are 
inevitable sometimes because of the existence of “*” 
(wildcard), but we can try to lessen them as much as possible. 
On the other hand, rule replication also brings about extra 
power consumption since a rule may store in more than one 
TCAM blocks which causes multiple blocks to be activated 
when a matching packet arrives. Besides, rule replication 
generates extra storage overhead. Therefore, the challenges 
of lower power consumption TCAM are general rules and 
memory efficiency. 

Existing researches present that the real classifiers have 
some common characteristics and inherent redundancies 
which can be exploited to reduce rule replication[4][5][7][9]. 
For example, the address fields source address (SA) and 
destination address (DA) provide sufficient separability even 
for multi-field rules. And the distribution of real rules is 
unbalanced. The state-of-the-art research, CutSplit[9], proves 
that only a few rules have lager range lengths of fields 
(called big rules) and the vast qualities of rules share a small 
range lengths of fields (called small rules). Lots of rules 
among small rules have distinctive fields. These features are 
still valid for SA and DA fields. Therefore, CutSplit proposes 
that building decision-tree without rule replication in cutting 
phase is possible and implements the modified FiCuts in 
HybridCuts. Moreover, block-size, as the capacity of one 
TCAM block, is a finite number which means that storing 
the tree node whose nrules is close to block-size into a 
special block to construct a pre-classifier will receive high 
performance. Next, we will present the details of our design. 

B. Count-tree 
As mentioned above, the purpose of our algorithm is to 

find the nodes whose nrules is the most nearly to block-size. 
So we propose a count-based decision-tree algorithm to 
capture the nrules of every node, called count-tree. First of 
all, we partition the rule set based on SA and DA and put big 
rules in general blocks because they may bring about rule 
replication and activate in more than one special blocks. We 
then make use of the remaining subsets to construct the 
count-tree by mapping the decision-tree. Figure 3 shows that 
how to use the small set in Figure 1 to build the count-tree 
with two-field cutting. The details of count-tree construction 
are as follows: 

x Step 1: partition rule set. 1) Big set: SA and DA are 
both big fields, 2) SA set (SA cutting): SA is small 
field and DA is big field, 3) DA set (DA cutting): 
DA is small field and SA is big field and 4) Small set 
(two-field cutting): SA and DA are both small field. 

x Step 2: remove big set. Store big rules into general 
blocks. 

x Step 3: construct decision tree. Based on the 
optimized FiCuts in CutSplit, we can construct a 

TABLE I.  NRULES DISTRIBUTION OF LEAF NODES (BINTH=4) 

Rule set 
Nrules range 

0-4 4-8 8-16 16-32 >32 
ACL 91.07% 2.97% 2.60% 2.45% 0.91% 
FW 90.89% 5.28% 3.01% 0.37% 0.45% 
IPC 93.08% 1.94% 1.71% 2.65% 0.63% 
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decision-tree without rule replication. Besides, we 
introduce parent pointers and child pointers that 
respectively point to their parent nodes and child 
nodes to achieve rule updates and sub-tree splitting 
in splitting algorithm mentioned below. 

x Step 4: count-tree mapping. The implementation of 
count-tree is simple via only storing nrules in every 
tree node. 

As a result, a count-tree without rule replication has been 
built. Using ClassBench[28], we evaluate the nrules 
distribution of leaf nodes in our algorithm since FiCuts will 
result in that the nrules of leaf nodes may be greater than 
binth. As shown in TABLE Ⅰ, only a few leaf nodes’ nrules 
is greater than binth, less than 10%. Among them, less than 
1% of the leaf nodes have a large nrules than 32 which is far 
less than block-size in practice. Thanks to characteristics of  
nrules distribution, the nodes of the entire tree may exist a 
node that its rule number is close to block-size even equal. 

C. Abs-based splitting 
Based on above observations, we propose our first 

algorithm, called abs-based splitting. Building a count-tree 
with a small binth enables that the leaf nodes only include a 
little rules. Taking advantage of this feature, we introduce 
another value ∆, the absolute value between nrules and 
block-size, as the judgment criteria of the best carving node. 
Apparently, if ∆ gets closer to zero, nrules is closer to block-
size. Therefore, we select the best carving node by sorting ∆ 
in descending order. Even if nrules is greater than block-size, 
∆ is the smallest in all nodes, only storing ∆ nrules into 
general block is acceptable for better storage overhead and 
power reduction. 

We present the pseudo code on how to use abs-based 
splitting to build a pre-classifier in Algorithm 1. This 
algorithm inputs a count-tree tree and a parameter block-size 
b. The entire tree in our algorithm is traversed in level order 
looking for the best carving node. The best carving node is a 
node whose ∆ is the smallest. Different from SmartPC and 
CoolCAMs, this up-down approach is global optimal. Every 
time the best carving node is found, put the rules of this node 
in special block and put relevant index in index TCAM if 
nrules is less than block-size. Otherwise, divide the rules into 
two parts. Among them, the lager one containing block-size 
rules stores in special block and updates index TCAM, the 
other with ∆ rules is put in general block. Using parent 

pointers and child pointers, the entire tree removes all the 
rules of this node and marks its descendant nodes and itself 
as NULL to implement sub-tree splitting and no rule 
replication. At the same time, update the ∆ and nrules of 
entire tree. End the loop until the root node includes the 
number of rules which is less than block-size, put it in special 
block and update index TCAM. Figure 4 shows that how to 
carve out a count-tree using abs-based splitting.  

D. Level-order splitting 
 Obviously, the abs-based splitting algorithm will still 
ineluctably produce general rules. As an improvement, we 
put forward another tree splitting algorithm, called level-
order splitting. The nrules of leaf nodes are very small as 
mentioned before. Making use of this property, level-order 
splitting builds a pre-classifier with multi-prefix to fill up 
TCAM block as much as possible.  

Algorithm 2 level-order splitting (tree, b) 
1: while (root.nrules > b) 
2:     traverse tree with level order; 
3:     find p = the node is closest to b but not greater than b; 
4:     let left = b – p.nrules; 
5:     if (left = 0)  
6:          put rules(p) in new special block; 
7:          put prefix(p) in index TCAM; 
8:          for each u is descendant of p do 
9:                 u = NULL; 

10:           for each v is ancestor of p from root to p do 
11:                 v.nrules = v.nrules - p.nrules; 
12:      else  
13:            put rules(p) in new special block(b); 
14:            put prefix (p) in index TCAM(i); 
15:            for each u is descendant of p do 
16:                  u = NULL; 
17:            for each v is ancestor of p from p to root do 
18:                  v.nrules = v.nrules - p.nrules; 
19:            while ( left > 0)  
20:                  traverse tree with level order; 
21:                  find q = the node is closest to b but not greater than left; 
22:                  left = left – q.nrules; 
23:                  put rules(q) in old special block(b); 
24:                  put prefix(p) in old index TCAM(i); 
25:                  for each u is descendant of q do 
26:                        u = NULL; 
27:                  q = NULL; 
29:                  for each v is ancestor of q from q to root do 
30:                        v.nrules = v.nrules - p.nrules; 

Algorithm 1 abs-based splitting (tree, b) 
1: while (root.nrules > b) 
2:       traverse tree with level order; 
3:       find p = the node with smallest ∆ 
4:       if (p.nrules > b) 
5:             put ∆ rules(p) of p in general block; 
6:             put other b rules(p) in new special block; 
7:             put prefix(p) in index TCAM; 
8:        else  
9:             put rules(p) in new special block; 

10:              put prefix(p) in index TCAM; 
11:        for each u is descendant of p do 
12:              u = NULL;  
13:        p = NULL; 
14:        for each v is ancestor of p from p to root do 
15:              v.nrules = v.nrules - p.nrules; 
16:              v. ∆ = | v.nrules - b |; 
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 Similar to abs-based splitting, the input parameters are a 
count-tree tree and the block-size b. But extra value ∆ is 
removed because the structure of multi- prefix only needs the 
nodes whose nrules are less than or equal to block-size. The 
pseudo code of level-order spitting is shown in Algorithm 2. 
First, find the node whose nrules is the closest to but not 
greater than block-size. Define left to be the difference value 
between nrules and block-size. If left is zero that means this 
node fills up one TCAM block, put the rules of this node in 
special block and relevant index in index TCAM. If not, find 
another node whose nrules is the closest to but not greater 
than left and let left be the surplus entries of TCAM block. 
Then judge whether left is zero to end the loop and put the 
rules of these nodes in the same special block and relevant 
index in the same index TCAM. Every time the carving node 
is found, the entire tree removes all the rules in this node and 
marks its descendant nodes and itself as NULL with parent 
pointers and child pointers. End the loop until the root node 
contains rules that is less than block-size, put it in special 
block and update index. Although the employment of multi-
prefix brings extra consumption in pre-classifier, it is 
negligible compared to the significant decrease in general 
rules. Figure 5 illustrates an example of level-order splitting. 

IV. EXPERIMENT RESULTS 
In this section, we evaluate the performance of EcoCAM 

compared with SmartPC[24] and GreenTCAM[26]. The rule 
sets used in our experiments are generated by 
ClassBench[28]. We choose the 100k rules based on three 
representative types of rule sets: Access Control List (ACL), 
Firewall (FW) and IP Chain (IPC). Besides, we implement 
the classical algorithm SmartPC which is publicly available 
in [29] as well as our algorithm. Based on existing schemes, 
we evaluate our algorithm from power reduction and storage 
overhead. 

A. Power reduction 
As we discussed earlier, general rules are the main factor 

that affect power consumption in TCAM-based algorithms. 
Furthermore, the structure of pre-classifier also brings a little 
energy consumption. For these purposes, we take account of 
these two affecting elements to evaluate the performance of 
power reduction. Since the rule sets of our evaluation is 100k, 
we select 5 different TCAM block-size: 128, 256, 512, 1024 
and 2048 representatively. Because of limited space, TABLE 
Ⅱ and TABLE Ⅲ only display the number of general rules of 
our algorithms: abs-based splitting and level-order splitting. 
Figure 6 shows the power reduction of our algorithms with 
block-size 256 compared with SmartPC and GreenTCAM. 
On the other hand, the ratio of pre-classifier entries ranges 
from 0.1% to 1% as the block-size decrease, leading to 0.1% 
to 1% power consumption. 

Clearly, our algorithms achieve enormous results in 
general rules reduction, almost remove all of them. As a 
result, the power reduction ratio of abs-based splitting ranges 
from 65.3% to 98.8%, and the average is 91.1%. Another 
scheme level-order splitting, as the improved approach, 
achieves a higher power reduction ranging from 84.6% to 
99.5% and with an average of 97.8%. Besides, level-order 
splitting works better with the increase of block-size. 
Compared to the average power reduction of 88% in 
SmartPC and 93.6% in GreenTCAM, we receive an excellent 
performance. 

TABLE II.  GENERAL RULES USING LEVEL-ORDER SPLITTING 

Rule sets 
Block-size 

128 256 512 1024 2048 
acl1_100k 5 5 5 5 5 
acl2_100k 14837 13588 106 106 106 
acl3_100k 336 336 336 336 336 
acl4_100k 373 373 373 373 373 
acl5_100k 0 0 0 0 0 
fw1_100k 199 199 199 199 199 
fw2_100k 3 3 3 3 3 
fw3_100k 250 250 250 250 250 
fw4_100k 12695 920 920 920 920 
fw5_100k 193 193 193 193 193 
ipc1_100k 147 147 147 147 147 
ipc2_100k 0 0 0 0 0 
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Figure 6. Power reduction for rule sets with block-size 256 

TABLE III.  GENERAL RULES USING ABS-BASED SPLITTING 

Rule sets 
Block-size 

128 256 512 1024 2048 
acl1_100k 26401 28687 840 8845 23901 
acl2_100k 2581 5158 3439 13574 20511 
acl3_100k 32199 4365 11030 15665 22507 
acl4_100k 9046 5298 11981 14192 28556 
acl5_100k 25300 11523 0 8347 24702 
fw1_100k 12624 4909 15092 22127 10518 
fw2_100k 26680 3770 7170 13653 32500 
fw3_100k 19102 3370 11677 16368 23703 
fw4_100k 6048 6399 17131 21807 7188 
fw5_100k 16747 2026 8579 27641 21574 
ipc1_100k 23196 5550 8310 15365 32530 
ipc2_100k 23713 7569 18084 18283 28056 
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Figure 5. An example of level-order splitting (block-size=4) 
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B. Storage overhead 
Storage overhead is another significant evaluation factor 

because of the high price and finite capacity of TCAM. First 
of all, our algorithm won’t produce rule replication since the 
construction of count-tree employs the optimized FiCuts in 
CutSplit. Moreover, the top-down approach and building a 
pre-classifier with multi-prefix will fill up the TCAM blocks 
as much as possible. Although the abs-based splitting has a 
large range from 0.5% to 50.7% because of the unstable 
value ∆ and its average is 27.7%. The level-order splitting 
takes advantage of pre-classifier with multi-prefix to enhance 
the usage of TCAM block entries, which ranges from 1% to 
14.8% and has average storage overhead of 5.3%. 
GreenTCAM has the similar performance with average 5.6% 
in storage overhead, but it brings about rule replication and 
needs extra SRAM. SmartPC, however, suffers from huge 
inefficient memory due to its bottom-up expanding 
mechanism. The storage overhead of SmartPC ranges from 
10.8% to 61% and has an average of 43.1%. Figure 7 shows 
the storage overhead of our algorithms, SmartPC and 
GreenTCAM with block-size 256. 

V. CONCLUSION 
In this paper, we propose EcoCAM that employs the 

combination of decision-tree and TCAM to significantly 
reduce the power consumption and enhance the memory 
utilization of TCAM. Since the entries of TCAM block is 
finite, we build a count-based tree by mapping a decision-
tree and select appropriate tree nodes to make up the pre-
classifier. The construction of decision-tree using the 
optimized FiCuts in CutSplit removes all rule replication. 
Taking a top-down approach, tree traversal is global optimal, 
resulting in higher power reduction and less storage overhead. 
And the adoption of multi-prefix improves the performance 
once again. The experimental results show our algorithm 
achieves power reduction up to 99.5% with an average of 
97.8% and the storage overhead is only 5.3% on average. 
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Abstract—4G networks dramatically boost the speeds and cov-

erage of networks, and there are mounting mobile data produced

by data sources of 4G. The generated data can be applied

into preventing financial criminal activities, for example, account

leakage risks can be prevented with such data instantly, which

demands short time delay to predict the fraud, at most within

50 ms. Furthermore, the lower latency, higher data capacity of

forthcoming 5G networks will create a new platform for the

delivery of services wherever the 5G network exists, paving a

way for artificial intelligence-based banking services. Real-time

prediction services and data analytics services that can be inte-

grated into business applications have become eagerly demanded

in recent years. However, most machine learning and deep

learning platforms only provide offline model training&test and

model predictions without real-time feature processing. Diting is

an easy-to-use distributed intelligent machine learning platform,

providing offline model training and low-latency feature serving

for predictions in real time. Diting offers incremental feature

computing, combines technologies of resource scheduling, rule

engines, and Remote Procedure Call (RPC), and builds a real-

time distributed computing framework, thus offers low-latency

end-to-end prediction services. Diting is also a collaborative,

drag-and-drop and virtualization tool. Domain expert users

without any programming knowledge can quickly fulfill their

business logic. Using real production data for over two months,

we show that Diting tremendously improves productivity, and

bridges the gap between offline and real-time feature engineering.

Keywords: Real-time Computing, Incremental Aggrega-
tion, Distributed Systems, Feature Engineering.

I. INTRODUCTION

Since the first 4G networks were launched, e-commerce has
undergone an extensive proliferation in the past decade, now
over 80% of online shopping is running on 4G networks in
Jingdong (JD), the world’s third-largest internet company by
revenue and China’s largest online retailer. JD Finance, the
wealth management platform of JD, was established to give
individuals and businesses quick, easy and convenient access
to the financial service. The pervasion of 5G networks could
revolutionize the e-commerce and the finance industry by
Virtual Reality (VR), Augmented Reality (AR) technologies
and predictive machine learning-based services. These services
generally collect a user’s behavioral data in real time to
recommend location-based financial advice, such as suggesting
new ways to save at the retail store and offering more precise
and valuable wealth management consultation.

Nowadays, machine learning (ML) has come to play an
integral role in many stages of the financial ecosystem, from

assessing risks to granting loans, to the handling of bad assets,
to fraudster detection. ML models are required to be trained
with a wide range of features. Solving a ML problem often
involves the following steps: gathering data, cleaning data
(ETL), feature engineering (FE), model training, testing and
prediction [1]. ETL stands for Extract, Transform, Load, and
it aims to provide clean data before FE. In Diting, ETL is
incorporated into FE. In order to build a model that can
make the best prediction or recommendation, the first thing
one needs to do is to generate appropriate features from
the datasets; better features are the deciding factor of the
performance of a system.

With advancements in technology, more and more predic-
tions are expected to be done in real time [2]. Identifying
fraudulent purchases in a particular time frame in e-commerce
scenarios can prevent losses of millions of dollars per year.
However, FE of traditional artificial intelligence platforms
often focused on a batch or offline FE. It would take a
team of data engineers additional months to develop a manual
pipeline of real-time FE. To the best of our knowledge, there
is no precise report concerning systems that automatically
provide feature serving in real time using the same logic as
offline feature cleansing. Real-time feature serving is defined
as providing the feature processing service for real-time ML
prediction, bringing feature data over the network in real time.

Rather than force the session to process the entire source
data from scratch, incremental computing is generally adopted
to do the real-time computing. Intuitively, incremental FE
computation can be implemented using dynamic/incremental
algorithms methods, where programmers need to design the
logic that maintains the value of a function over an evolving
set, for example, tracking the maximum amount of payment
that changes with insertions or deletions of incoming tuples
[3]. Nevertheless, after a large body of prior research in
the incremental algorithms, we found that although they are
efficient, they are usually complex to realize even for simple
fully dynamic questions like dynamic connectivity [4], [5], [6].
Therefore, we resort to incremental sliding window analytics
[6] to tackle real-time computation, and better yet, certain
characteristics of sliding windows are exploited so that the
time consumption of a single incoming tuple is not dependent
on the size of the whole historical data but rather commensu-
rate with the number of intermediate results.

In summary, the main contributions of this paper are ab-
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stracted as follows:
• an easy-to-use distributed ML framework and analyt-

ics: Machine learning can be hard to grasp for most peo-
ple, especially those who are from a non-programming
background. Diting is a drag-and-drop tool that automates
machine learning and does not require any coding. It’s
a visualized modeling tool that lets users build custom
models, train them, tune them by adjusting parameters,
and deploy them in applications. The model is built in
the distributed cluster, its performance is guaranteed.

• support for custom-built end-to-end FE pipelines:

Diting eliminates most of the draining operations related
to preparing features for ML, ranging from cleansing,
normalization, feature extraction to feature transforma-
tion.

• offer a unified framework for real-time and offline FE

and model prediction service: FE is the process of con-
structing new features from existing data to train an ML
model. Diting removes human-labor processes for users,
provides an automatic offline-to-real-time projection of
FE & ML pipelines.

II. RELATED WORK
Spark streaming [7] processes data streams in mini-batches,

where each mini-batch collects a set of events that arrived over
the batch period. The minimum interval at which data received
is recommended to be 50 ms. While we require each and every
record is processed as it arrives, and the maximum latency is
50 ms.

Storm uses topologies to do real-time computation. For
a Storm topology, the user has to specify the amount of
resources, and the resources is not shared between topologies,
therefore the maximum amount of runnable topologies is finite.
Whereas in Diting, real-time DAGs can be dynamically added
or removed as rules, are evenly distributed in the cluster by
dynamic scheduling, so the resources of CPU and memory of
the cluster isn’t occupied exclusively by any DAG, there is no
limitation of the number of the DAGs. Once the average loads
of CPUs or the heap size per worker (JVM) is too high on a
cluster, new servers can be added to the cluster. Besides, Storm
still requires manual programming, whilst coding is removed
from Diting system by configuring rules.

III. IMPLEMENTATION & DESIGN

Since the problem of Real-time feature serving is generic,
any other organizations can draw on the experience we de-
scribe here no matter what industries they involve in as long
as unifying offline and real-time FE is business-critical.

A. Highlights of Our Approach
Incremental Aggregation for FE. Incremental aggregation

aims to tackle the problem of real-time computing of a limited
set of aggregate operators such as mean, max, min, sum,
count, .etc, and a large number of complex aggregates of the
above basic operators. Besides, one predictive computation
is customized for certain business scenarios. If a customer

demands more features, then accordingly the pipelines could
be adjusted to it.

We first consider some fundamental operators in database
systems and Data Stream Management Systems (DSMS) [8],
[9], [10], [11]. They are categorized into distributive (e.g.,
max, min, sum, and count) aggregates and algebraic (e.g.,
avg, std, trend, skew) aggregates, and some holistic aggregates
(e.g., median, mode), organized by [12].

The incremental aggregates we support are listed as follows:
mean, standard deviation, sum, min, max, count, distinct count,
trend, time since last time, last value, skew, and feature
generation derived from previous aggregates.

Considering continuous tuples from 4G networks are
deemed as inputs of downstream of the streaming system
like Apache Storm [13], the featre serving automatically will
trigger an incremental aggregation pipeline to compute the
statistics instantly, without recomputing on a large chunk of
historical raw data from scratch. These results will be stored
in a fast key-value database, such as Redis, to offer a prompt
fetch for the following predictive service.

Two-Phases FE processing algorithm: We create a Two-
Phases FE processing algorithm. In phase A, the pipeline pre-
computes all the incremental intermediates for the required
measures; in phase B, the pipeline doesn’t do any incremental
calculation and directly fetches the intermediates produced in
phase A and make a simple calculation to derive the final
results. The motivation of separating the two phases is to
achieve the real-time outcome of the features and minimize
the computation and I/O transmission. The phase A takes place
right after a new tuple arrives at a window and propagates the
update of the tuple with the previous aggregated value. The
phase B relies on a few intermediates, which means it is in the
blink of an eye. The prerequisite of this approach is that we
know in advance about the sort of aggregates and features that
are needed in an application. The customization characteristic
of the framework is adopted to improve the performance of
the response time. For example, average can be treated as
sum
count . sum and count are incrementally calculated in the
phase A ahead, and The phase B only merges the incremental
intermediate and the value of the current tuple, and does a
division of sum and count, and similarly standard deviation
relies on sum of squares, sum, count.

Rule-based Real-time Distributed Computing The start-
ing point of a model training&test and model prediction
service is the generation of a user directed acyclic graph
(DAG, also known as workflow), composed of nodes produced
by our user in the Web UI. The DAG will be automatically
mapped into two separate versions, an offline DAG and an real-
time DAG. Offline DAGs are different from real-time DAGs
because real-time DAGs do not include all the nodes in offline
DAGs, such as model training or test, model evaluation, etc.
In a DAG, a node represents a task, which can be mainly
classified into two categories, one is feature related, another is
model related; and an edge stands for the data dependencies
between tasks, which makes the nodes connected in a pipelined
manner. Through a few clicks of drag-and-drop and parameter
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configuration, a user of ML scientist can model a request in
a DAG like Fig. 1.

Fig. 1: DAG example

It is worth noting that multiple DAGs could be executed
because multiple users could be using the system simultane-
ously, and a user may create any number of different DAGs
at any time, and after model training and test, a user can
deploy a DAG service. All DAGs can be executed parallel
simultaneously. For offline DAGs, there are many mature
resource management and job scheduling systems could help
schedule jobs of offline DAGs, such as Hadoop Yarn [14],
Apache Mesos [15]. For real-time DAGs, a distributed com-
puting framework is required for adding and removing real-
time DAGs dynamically.

The benefit of the rule-based approach is that users only
need to draw a user DAG and configure parameters, no need
of writing codes. The details will be discussed in Chapter 3.

B. Incremental Windowing

Windows are at the core of processing streams [8], [16], in
this paper, we employ an incremental update mechanism that
can embody incremental changes of the newly arrived tuple
and update the intermediates of the measure attributes.

Among the three types of sliding windows: Hopping, Tum-
bling, and Overlapping, we focus on Tumbling windows (also
called Fixed windows). Tumbling windows are defined by a
static window size, and the window size equals the sliding
period [17], [18]. The tumbling window processes queries
in a non-overlapping manner. The only difference between

our tumbling window and traditional tumbling window is
that traditional tumbling window waits until window time is
over, and process only once when all the tuples belong to
the window is collected. We create an incremental tubmling
window, once an incoming tuple arrives, it will get processed
at once, so it does not cover the entire input when a windows
starts. The current window tumbles on a window-size basis.
when the last window time is over, and the window is empty.
As time goes by, the input tuples arrives, the window gets
filled in real time until it is full. Therefore, we achieve better
real time performance by not waiting for the whole length of
a window size. For example, a one-minute tumbling window
incrementally processes tuples that occurred in one minute and
slides after the minute passed.

Fig. 2: Windowing design and merge, with an example of
computing the average of 90 days.

Windowing chops up an unbounded stream into finite
dataset based on time or tuples, and then process each window
as a separate group [19]. We support four types of windows
sizes, one day (daily), one hour (hourly), one minute, and one
second. The upper limits of caching number for each window
are 180 days, 24 hours, 60 minutes, and 60 seconds, and we
require features within the longest time span of 180 days be
available in 50 ms at most. These various window sizes are
fairly enough for generating features for possible user queries
we collected.

The tumbling window offers an advantage of simplicity for
later window merging that joins integer number of windows.
The window merging logic subjects to both the window
partitioning and sliding methods, it regards the current day
as an integer day no matter whether it has finished, then glues
the remanent windows together. If a query is about to fetch a
feature in the past 90 days, a combination output of eighty-
nine-days windows and one incomplete accumulating window
will be returned as shown in Fig. 2.

IV. RULE-BASED REAL-TIME DISTRIBUTED COMPUTING

It is hard to let users do custom coding and implement
the model training and serving especially when requirements
change frequently. With the combination of real-time technolo-
gies of resource scheduling, rule engine, RPC HA service,
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the rule-based real-time distributed computing framework is
established.

Resource scheduling involves allocating system resources
according to the computational load of given tasks, which is a
crucial technique for providing high performance distributed
computing [20], [21]. Scheduling of tasks in distributed com-
puting systems aims to schedule when and where each task
should be executed in a cluster. As can be seen in Fig. 3, the
feature service master does the scheduling by checking which
worker has the least running jobs.

Rule engines [22] are a mechanism for executing “busi-
ness rules”, interprets complicated condition/action statements,
often in the form of “if/then” notations. Rules are stored
in a rule database, then the engine watches over the input
stream, matches the data against the existing rules in real
time, and then execute appropriate actions when conditions are
met and therefore can keep data moving at low latency [22].
The biggest advantage of rule engines is that they decouple
business logic and application code, which means business
logic doesn’t need to be hard-coded into the program with
procedural languages. All the business logic is centralized, so
it is easier to maintain, enhance and update new logic, which is
a pluggable component that doesn’t have to restart the system
for rule changes or deploying new executable rule.

In rule engines, we make one rule represent one DAG
executor or one Node executor. A worker and DAGs are of
one-to-many relationship. Assume a rule is a DAG, when
building a rule engine, and deploying a new DAG to a worker,
to decide on which worker the DAG should be deployed,
the resource scheduler of the master judges on-the-fly which
worker is running the least number of DAGs, then allocates
the DAG to the worker. So the association between a DAG
and a worker is a one-to-one mapping.

RPC is a protocol that allows one program to request a
service of a program located in another computer on a network
as if it were a normal local program. We use a cross-language
RPC framework as a fundamental technique for distributed
services. It provides high availability (HA) in the production
environment and supports load-balance. We develop the dis-
tributed framework by designing a master and many workers
on the cluster. Each worker or master is redundantly distributed
in the cluster , if any worker or master failed, the system
still provides normal service. The number of workers on a
RPC service lies in the CPU and main memory capacity of it.
The logical structure of rule engines and distributed services
is illustrated in Fig. 3. A job can be a feature serving node
or a real-time DAG executor, the significant characteristic of
the real-time distributed computing architecture is that both
of feature serving and DAG executors are working on the
mechanism of it.

When a message arrives, each message has a “topic” at-
tribute, representing the data source of DAGs, and many DAGs
may have the same topic (data source), so the master looks up
the topic and gets which DAG the message belongs to. Since
a DAG and a worker are of one-to-one relation, the master
matches the topic with a worker, then dispatches the message

Fig. 3: Real-time distributed computing architecture. If a
message from feature serving or a real-time DAG is matched
with a rule, a job will be started as a rule executor.

to all the workers with related DAGs, and execute the DAGs
concurrently.

Fig. 4 shows how users of Diting interact with the system
and work in order. From the user perspective, he or she by
drag-and-drop can create an application model as a user DAG,
After one click of the “Save” button, the offline system will
generate an offline DAG transparently in the background. Then
the user click “Train” button, the offline system will run the
offline DAG which executes feature engineering and model
training and test altogether.

Now, users can click “Deploy Prediction Service” button
to add related rules to the real-time service, it will convert
the user DAG to a real-time DAG; finally, the user click
“Start Prediction Service” button, the system will add the real-
time DAG rule to rule-based real-time distributed computing
service, and the rule of the service takes effect . The user is
free of coding throughout the process.

V. EXPERIMENTAL EVALUATION

We built Diting system on a cluster of 10 servers, each
with hardware as follows: 2 x Intel R� Xeon R� E5-2650 v4
of CPU, 16 x DDR4 2133Hz 16GB of RAM, 8 x SAS 2.5”
15K 6Gb 600GB (RAID 10) of storage, 2 x Intel X520 10Gb
of network.

We present an experiment of a login model to show the
performance of Diting. Login model is an approach to capture
outliers of login behaviors in JD over 220 million active users,
it captures the sequence of login actions, uses the model
of LightGBM to predict the probability of a user account
being hacked and at risk of capital losses. The LightGBM
is a gradient boosting framework that uses tree based learning
algorithms [23].

We evaluate the performance of Diting by doing feature
computing for the login model on the real production stream-
ing data, the features calculated by Diting is mainly about the
count of login behaviors in the past 2/5/24 hours, and average
time of a login action, the distinct count of located cities
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Fig. 4: Diting system flowchart. Users enjoy the real-time end-
to-end feature serving and prediction service.

of a login action, etc. There are about 27 features produced
in a feature engineering. Fig. 5 shows the prediction service
latency of a tuple is done on a dataset of two months, the
average time of a feature computing is circa 4.1 ms, which fills
the lacunae between offline and real-time feature engineering,
and tremendously improves productivity. Traditional methods
of developing a pipeline of feature serving take about two
months. 100% accuracy is guaranteed as long as the offline
and real-time processing are working on the same data.

Fig. 5: Average latency running on a real production streaming
data source for two months. The two pulses of the figure are
due to network instability.

VI. CONCLUSIONS

We presented Diting, a real-time feature serving system with
an easy-to-use interface, and a rule-based distributed comput-
ing framework. We showed that Diting can create millions of
features both in real-time and offline circumstances. We also
validated that Diting is real-time in a production cluster with

Fig. 6: Throughput aggregated by day running on a streaming
data source for two months.

inspiring results. Incremental aggregates of more basic features
and more accurate feature computing are our future work.
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Abstract—In collocated environments for real-time (RT) and
non-RT services, processor cores are often isolated to guarantee
real-time requirements. Allocation of the last level cache (LLC)
is an emerging problem for consistent latency. This paper shows
that consistent real-time latency in a collocated commodity
virtual machine environment is achievable by appropriate LLC
partitioning and core allocation. In a Linux KVM-based hosted
environment, the authors have implemented two LLC partition-
ing techniques: dedicating cache to critical RT services and
allocating a pollute buffer to non-critical non-RT services by
using Intel Cache Allocation Technology (CAT). Experimental
results show that it was feasible to run both hard and soft
real-time services using these cache partitioning techniques when
exclusive cores were allocated to real-time virtual machines. It
was also feasible to run soft real-time services using these LLC
partitioning techniques without allocating exclusive cores.

Index Terms—Real-time, virtual machines, LLC, resource
isolation

I. INTRODUCTION

People use real-time (RT) and time sensitive networking
services including Voice over IP (VoIP) and interactive Web
searching everyday. Such servers require low latency and
low variance of latency, and have soft or hard real-time
requirements.

It is a common practice to run RT and non-RT services
together in shared machines [1], [2]. Because these services
have different timing requirements and complexity, we some-
times have to run multiple operating systems (OSs) using a
hypervisor. For example, Jailhouse [3], [4] is a hypervisor
that is designed to run RT applications on IA64 and ARM
processors. It partitions CPU cores and memory resources of a
Linux system statically. The main partition executes Linux and
others execute additional RT OSs or bare-metal RT programs
in parallel for achieving real-time requirements. Linux KVM
and Xen are also used for different timing requirements [5]–
[10]. In a data center, using a hypervisor is a must for effective
management.

In a collocated environment of RT and non-RT services,
many approaches focus on the computational resource and
allocate exclusive CPU cores to the RT threads of an RT

service. Some of them are designed for virtual machine
(VM) environments [5], [7]–[10]. These approaches for virtual
machine environments, however, do not take into account the
last level cache (LLC). Other approaches focus on the LLC and
allocate exclusive LLC partitions to an RT service [11]–[13].
However, these approaches of LLC allocation do not consider
virtual machine environments.

In this paper, we describe an approach to a consistent real-
time latency in a Linux KVM-based hosted environment. We
focus on LLC allocation by making maximum use of advanced
hardware support, Intel Cache Allocation Technology (CAT)
[14]. This hardware enables partitioning LLC and allocating
some LLC partitions to a group of threads. We control this
hardware through resctrl, a resource control framework and
interface of Linux [15].

The contribution of the paper is an experimental demonstra-
tion showing that consistent real-time latency is achievable
using the CAT in a Linux KVM-based hosted environment.
This paper shows the effect of the CAT in the hosted virtual
machine environment that ran a critical real-time networking
service and non-critical disturbing tasks together. We compare
and evaluate two LLC partitioning techniques in conjunction
with two CPU core allocation methods.

II. IMPLEMENTING LLC PARTITIONING WITH INTEL CAT

The cache pollution problem has been evaluated and con-
firmed harmful for either throughput or latency sensitive
workloads on both uni-processor and SMP platforms [11]–
[13]. In our particular scenario, we run a critical RT service
and other non-critical non-RT services together in a system
and evaluate two LLC partitioning techniques that solves the
cache pollution problem.

A. Software controlled cache partitioning

We implement LLC partitioning techniques in an Xeon pro-
cessor, which has an ability to partition the LLC, called Cache
Allocation Technology (CAT) [14], [15]. A CAT-enabled pro-
cessor has a number of pre-defined LLC partitions and classes
of services (COSs). Each partition can be associated with one
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or multiple COSs. Each thread has the attribute of a COS and
a CPU core has the register of a COS. When a kernel executes
a thread, the kernel sets the COS attribute of the thread to the
COS register of the CPU core. The core executes the thread by
accessing the LLC partitions that are associated with the COS.
The kernel accesses the machine specific registers (MSRs) to
manage and organize the mapping of LLC partitions, COSs
and processor cores.

Linux kernel version 4.10 and later provide resctrl, a frame-
work and interface of resource control. This allows system
administrators to change the mapping of LLC partitions, COSs
and processor cores. In addition, this interface provides a
mechanism to monitor the LLC usage for each task, and
identify cache pollution. In this paper, we control the LLC
partitioning based on the Intel CAT through this framework.

B. Cache dedication and pollute buffer allocation

A typical approach to solve the cache pollution problem is
cache partitioning. We reimplement the following two LLC
partitioning techniques:

• Dedicating cache to critical RT services [11], [13].
• Allocating a pollute buffer to non-critical non-RT services

for containment [12].
The former technique guarantees a required size of cache to
critical RT services and eliminates cache pollution. However,
it is difficult to find the best cache size while maintain both
low latency for RT services and high throughput for non-RT
services. It is easier to implement the latter technique than
the former one because no estimation of cache size is needed.
We can fix the size of a pollute buffer without analyzing RT
services.

Figures 1 and 2 show the implementations of these two
cache partitioning techniques in a hosted virtual environment
using the Intel CAT. In both figures, we run a critical RT
service in an RT VM and two non-critical non-RT services
in two non-RT VMs. Each VM has two virtual CPU (vCPU),
which correspond to two host threads. In addition to vCPU
threads, the host OS has house-keeping threads that perform
miscellaneous tasks of the host OS. For example, the house-
keeping threads execute the timer subsystem tasks and RCU
callbacks.

In Figures 1 and 2, we use two COSs, COS 1 and COS
2, for cache partitioning. Figure 1 shows dedication of cache
to the critical RT service. The LLC partitions of COS 2 are
dedicated to the threads of the RT VM, and the LLC partitions
of COS 1 are for other threads. Figure 2 shows allocation of
a pollute buffer to the non-critical non-RT services. The LLC
partition of COS 2 is allocated to the threads of the non-RT
VMs, and the LLC partitions of COS 1 are for other threads.

C. CPU core allocation methods

Besides two LLC partitioning techniques, we examine the
effect of CPU core allocation methods. Concretely, we use
following two production methods in Linux:

• The RT prioritized method. This method uses the PRE-
EMPT RT patch [16] and executes the threads of RT

Fig. 1. Dedicating cache to RT service.

Fig. 2. Allocating a pollute buffer to non-RT services.

services with real-time priorities. When a kernel performs
a context switch, the kernel replaces the COS register of
a core.

• The exclusive core method [3], [8]. In addition to the
PREEMPT RT patch, this method allocates an exclusive
core to a group of host RT threads. The COS register of
a core keeps a fixed COS value.

The later method produces better real-time performance than
the former method. However, the later method has disadvan-
tages: low utilization of exclusive RT cores and low throughput
of collocated non-RT services [17].

III. EXPERIMENT AND EVALUATION

A. Experimental setup

We have performed experiments using a simple RT server
in the experimental environment shown in Figure 3. We ran
netperf [18] as the critical RT service and measured mainly the
latency of the server. We used stress-ng [19] as a non-critical
non-RT service, which caused noisy cache accesses. We gave
stress-ng the following parameters:

stress-ng --cache 4 --vm 1

With the option “--cache 4”, the stress-ng program
spawned four threads that performed random wide spread
memory read to thrash the CPU cache. With the option “--vm
1”, the stress-ng program spawned a thread that continuously
called mmap() and munmap() system calls and wrote to the
allocated memory.

We ran a server of netperf in an RT VM and a single
instance of stress-ng in a non-RT VM. We ran two instances of
non-RT VMs because using two VMs yielded the maximum
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Fig. 3. Experiment environment.

TABLE I
POLICY AND RT PRIORITIES OF THREADS.

Thread Policy RT Priority

IRQ thread of RT NIC SCHED FIFO 95
RT VM vNIC thread SCHED FIFO 94
RT VM vCPU threads SCHED FIFO 90
Others SCHED NORMAL –

throughput in terms of the number of instructions per cycle
(IPC). Each VM had two vCPU threads. The RT VM had
a virtual network interface card (vNIC) thread. The host OS
had house-keeping threads as described in Section II-B. The
priorities of these threads were shown in Table I.

In the experiments, we used two physical machines. The
host machine is specified in Table II. The client machine has
an Intel i7-3820 processor with 32GB of RAM. The host OS of
virtual machines and the OS of the client machine were Linux
version 4.14.34 with the PREEMPT RT patch. The guest OSs
of virtual machines were also the same version of Linux. In the
VM host, we disabled hyperthreading, c-states, and p-states to
eliminate fluctuations in the hardware [20]. We used the same
parameters of Linux and KVM in the reference [6], including
enabling full tickless kernel and utilizing hugepage for virtual
machine memory regions.

As shown in Figure 3, two PCs were connected with a
network, which consisted of 10GBASE-LR Ethernets over
optical fiber. We used Intel X520 Ethernet converged network
adapters as the NICs. The maximum transfer unit (MTU) of
the network was set to the default value, 1500 bytes.

B. Metrics

In the experiments, we measured the following items.
• The maximum latency of the critical RT service. We use

this to evaluate the hard real-time performance.
• The 99th percentile latency of the critical RT service. We

use this to evaluate the soft real-time performance.
• The LLC miss rate of the real-time virtual machine.
• The IPC of non-RT virtual machines. We use this to

evaluate the throughputs of non-RT virtual machines.
We measured the latency of the netperf server with a

hardware monitor (an Endace DAG 10X2-S card [21]). We

TABLE II
SPECIFICATION OF VM HOST.

Component Specification

CPU Intel Xeon 2630 v4 @ 2.2Ghz 10C/10T
Memory 32GB DDR4
LLC Size 20MB
Number of LLC partitions 20
Number of COS 16
NIC Intel X520 10 Gigabits NIC

chose to use the hardware monitor because it had no probe
effect. The network in Figure 3 consisted of two optical links.
Each link had an optical splitter that divides signals into two
destinations. One destination was a network peer and the other
destination was the hardware monitor. The hardware monitor
took both the request and the reply packets, timestamped them
at a resolution of 4 ns, and saved them into a file. Note that
the obtained results included delays in the NIC of the server,
but did not include any delays on the client side.

We measured the LLC miss rate and IPC with the perf
command [22], [23], which took values from hardware per-
formance counters. We have chosen IPC as a throughput
metric rather than CPU utilization because IPC reflected
effective throughput better in our preliminary experiment. In
our experimental environment, we obtained the maximum IPC
using two non-RT VMs. When we increased the number of
non-RT VMs to three and four, the CPU utilization became
larger but the IPC became smaller.

In a single test, the netperf client sent 5000 request messages
to the netperf server, and the netperf server sent 5000 reply
messages to the netperf client using TCP. The size of a single
message was 64 bytes. We have slightly modified the client
of netperf, which sent requests at variable inter-arrival times.
In our experiments we tested from 1 to 10 millisecond. If the
cache pollution program stresses at a fixed rate, its impact to
the LLC is unchanged. Such a fixed impact can lead to steady
results. We should avoid this (by varying intervals) because we
measure the latency variance using multiple LLC partitioning
techniques. When the client sent request messages at a shorter
inter-arrival time, the LLC retained more contents of the RT
service. When the client sent messages at a longer inter-arrival
time, the LLC retained fewer contents of the RT service.

C. LLC partitioning techniques and core allocation methods

We compared performance using the following LLC parti-
tioning techniques:

• No partitioning. The entire LLC was shared by all VMs
and the host OS.

• Dedication of cache to critical RT services as shown in
Figure 1. The LLC was divided into two partitions. The
first half (10 MB) of LLC was allocated the RT VM. The
other half of LLC was shared by the other VMs and the
host OS.

• Allocation of a pollute buffer as shown in Figure 2. The
LLC was divided into two partitions. The first 1 MB of
LLC was allocated to the non-RT VMs as a pollute buffer
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Fig. 4. Maximum latency with exclusive core method.

Fig. 5. 99th percentile latency with exclusive core method.

as described in [12]. The rest of LLC was shared by the
RT VM and the host OS.

We also measured performance without running the cache
pollution programs (no load).

In conjunction with these LLC partitioning techniques, we
tried the following CPU core allocation methods as described
in Section II-C:

• The exclusive core method.
• The RT prioritized method.

D. Results using the exclusive core method

In this subsection, we compare the LLC partitioning tech-
niques using the exclusive core method as a core allocation
method. In this core allocation method, we pinned the threads
of the RT VM, the IRQ and the IRQ threads of the NIC to two
RT cores. We pinned the threads of each non-RT VM to two
cores. We also pinned house-keeping threads including RCU
callbacks to the other cores.

Fig. 6. LLC miss rate with exclusive core method.

Fig. 7. IPC of non-RT services with exclusive core method.

Figures 4 and 5 show the maximum and 99th percentile
latency of the netperf server, respectively. Under no load
condition, the latency was not affected by the inter-arrival time
of requests. Under load condition, the latency was affected
by the inter-arrival time of requests with no LLC partitioning
technique. By using the two LLC partitioning techniques, we
obtained consistent latency. Because both the maximum and
99th percentile latency were consistent, we conclude that it
was feasible to run both hard and soft real-time services with
these LLC partitioning techniques.

Figure 6 shows the LLC miss rate of the real-time virtual
machine. Using no LLC partitioning technique, the LLC miss
rate increased up to 50% as the inter-arival time became longer.
Using the two LLC partitioning techniques, the LLC miss rate
became zero. We did not see any differences between these
two LLC partitioning techniques in these experiments.

Figure 7 shows the total IPC of non-RT services. They were
around 0.5 and did not vary as the inter-arival time changed.
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Fig. 8. Maximum latency with RT prioritized method.

Fig. 9. 99th percentile latency with RT prioritized method.

E. Results using the RT prioritized method

In this subsection, we compare the LLC partitioning tech-
niques using the RT prioritized method as a core allocation
method. In this core allocation method, we did not pinned the
threads of RT VMs, the IRQ and the IRQ threads of the NIC
to cores. Any core was able to run any thread.

Figure 8 shows the maximum latency of the netperf server.
Under no load condition, we obtained a spike when the inter-
arrival time was 10 milliseconds. Under load condition, unlike
in Figure 8, we obtained spikes up to 4 milliseconds using
any LLC partitioning techniques. We conclude that it was
not feasible to run hard real-time services with these LLC
partitioning techniques using the RT prioritized method as a
core allocation method.

Figure 9 shows the 99th percentile latency of the netperf
server. This is very similar to Figure 5. We conclude that it
was feasible to run soft real-time services with these LLC

Fig. 10. LLC miss rate with RT prioritized method.

Fig. 11. IPC of non-RT services with RT prioritized method.

partitioning techniques using the RT prioritized method as a
core allocation method.

Figure 10 shows the LLC miss rate and is also similar to
Figure 6. Figure 11 shows the IPC of non-RT services using
RT prioritized method. They were around 0.5 to 0.7 and did
not vary as the inter-arival time changed. They were slightly
higher than those in Figure 7 using the exclusive core method.

IV. RELATED WORK

Early systems use page coloring techniques to allocate the
cache of the processors that have uniform set-associative cache
architecture. The paper [12] proposes a software-based LLC
partitioning technique using a pollute buffer and evaluates the
technique on a single core processor. This paper uses a page
coloring technique at the sub-process level. The paper [11]
uses a page coloring technique to allocate the cache for HPC
applications.
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These techniques do not work on the modern processors
that have non-uniform cache architecture (NUCA). Processor
vendors do not publish the internal mechanisms of NUCA
and it is obscure and difficult to peform reverse-engineering
of NUCA [10]. In this paper, we do not use a page coloring
technique but use software configurable LLC partitioning
mechanism as described in Section II.

The paper [13] uses multiple resource allocation techniques,
including cache partitioning techniques, for Web services in
Linux. LLC partitioning is dynamically controlled to keep
up with service level objectives (SLOs). This paper does not
consider virtual machine environments. In contrast, in this
paper we have implemented and evaluated LLC partitioning
techniques in a hosted virtual machine environment.

The paper [24] shows methods to efficiently schedule re-
sources in network function virtualization (NFV) on a DPDK
based system. The proposed scheduler is able to reduce the
effect of noisy neighbors and cache contentions of the system
to comply given SLOs in NFVs. In this paper, we tackle
a similar problem, while targeting a real-time hosted virtual
machine environment.

V. CONCLUSION

In this paper, we showed that consistent real-time latency
in a collocated commodity virtual machine environment is
achievable by appropriate LLC partitioning and core alloca-
tion. In a Linux KVM-based hosted environment, we have
implemented two cache partitioning techniques: dedicating
cache to critical RT services and allocating a pollute buffer to
non-critical non-RT services by using Intel Cache Allocation
Technology (CAT).

In the experiments, we measured the maximum and 99th
percentile latency of a simple network service. Experimental
results show that it was feasible to run both hard and soft real-
time services using these cache partitioning techniques when
exclusive cores were allocated to real-time virtual machines.
Experimental results also show that it was feasible to run soft
real-time services but we obtained spikes using these LLC
partitioning techniques without allocating exclusive cores.

We are currently finding the causes of these spikes. In
the future, we would like to evaluate these LLC partitioning
techniques using time sensitive network applications, such as
VoIP servers.
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Real-time Edge Computing for Cyber-Physical Systems (TREC4CPS) collocated with the 39th 

IEEE Real-time Systems Symposium (RTSS) on December 11, 2018 in Nashville, TN, USA. 

 

The increasing proliferation of Internet of Things (IoT) is giving rise to an ever-increasing 

volume of data that is being generated by the IoT sensors that reside at the edge of the 

network. Of specific interest to us are IoT applications found in cyber-physical systems where 

the streamed information must be processed in real-time to make informed decisions for a 

wide range of societal and environmental applications. For instance, emergency response 

systems and smart transportation systems are prime examples of multi-domain smart and 

connected community applications residing at the edge of networks. The term Tactile Internet 
has also been used to refer to these systems. Conventionally, such systems have been 

implemented using centralized architectures. However, as the scale and penetration of these 

data driven applications in the communities are growing, the challenges of these 

architectures become apparent; for example, the lack of scalability, single points of failure, 

and saturated communication resources. Moreover, the sporadic and uncertain arrival 

patterns for the IoT data streams complicates real-time stream processing because resources 

must be provisioned on-demand to fuse multiple temporally-unsynchronized data streams. 

Second, the temporally sensitive nature of the data, the resource constraints on IoT devices, 

and the large volumes of generated information make it problematic to always move these 

information streams to a centralized cloud data center that may be multiple network hops 

away with fluctuating bandwidths and hence the incurred delays, which is detrimental to the 

cyber physical systems.  

 

The purpose of the TRC4CPS workshop is to share new ideas, experiences and information 

about research and development in realizing trustworthy and real-time edge computing 

systems. The workshop comprises an invited talk by Dr. Aaron Paulos from Raytheon followed 

by two sessions of three papers each that handle different challenges in this realm. Finally, 

we close the workshop with a panel discussion on the topic of “Taming Uncertainty in Edge 

Computing to Assure Performance and Reliability.” 
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2018 General Chair Isabelle Puaut, Program Chair Rob Davis, and the remainder of the RTSS 
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Supporting Resiliency and Timeliness in Edge
Applications with Dispersed Computing

Aaron Paulos
Distributed System Group

Raytheon BBN Technologies
Cambridge MA, USA

apaulos@bbn.com

Abstract—In this abstract, we introduce a research effort that
explores the multi-attribute trade space covering the placememt
and location of computation and data, application performance
and resiliency, and resource utilization. We then discuss a concept
of how applications that consume large volumes of Internet of
Things (IoT) edge data and need to produce timely and reliable
results can benefit from this model of dispersed computing.

Index Terms—Distributed Computing, Middleware, Edge Net-
works, Internet of Things (IoT), Real-time Processing

I. BACKGROUND

Inexpensive networked IoT devices couple powerful sensors
with low-power processors. Such devices are often networked
to analytic and control software that execute more complex
and computationally expensive logic for reasoning about the
sensed data. In typical asymmetric deployments, streams of
rich sensor data, potentially in large volumes, will flow from
the network edge to a centralized data processing point. At
this command point sensor data is analyzed, and small control
messages are often sent back to the devices to re-task or
fine-tune its operation. In another data flow, analytic results
may be delivered to human operators under a strict timeliness
requirement (e.g., for search and rescue, threat identification,
or weather pattern detection application).

In mission-critical and real-time applications with edge
components, the dependence on centralized data centers and
the end-to-end networking substrate are key influencers of
the overall efficiency and efficacy of an application. Losses
of links, congestion, or jitter during data delivery, and over-
extended CPU and memeory are examples of faults and
stresses that may cumulatively degrade performance. In our
current work, we are investigating and prototyping transpar-
ent middleware-based approaches for utilizing emerging in-
network compute resources to host computation in optimal
locations with respect to the demand (see Fig. 1) and to
minimize the usage of the network backhaul.

In-network compute resources have the potential to sup-
plement the data centers’ massive compute power by widely
distributing localized compute capacities throughout the net-
work. This emerging trend offers an opportunity to rethink
how a mission-aware computing paradigms can address the
challenges faced by data-heavy IoT applications. While our

This work is being supported by DARPA under Contract No. HR0011-17-
C-0049.

work suggests one approach to transparently managing tasks
and data, many complementary techniques can help to miti-
gate quality-of-service (QoS) concerns. Perhaps most closely
related is the promise of edge and fog computing [1], [2].
Other mature approaches such as data filtering or aggregation
[3] can reduce the total volume of IoT sensor data. Select
resiliency capabilities such as forward error correction [4] and
QoS techniques [5] can help to maximize the predictability
and robustness of operations.

Fig. 1. Concept of Operation: Dispersing IoT Tasks into the Network.

II. A DISPERSED COMPUTING CONCEPT FOR ADAPTIVELY
PLACING IOT TASKS

Let us consider an scenario where a number of sensors are
collecting weather and environmental data. Such low-power
IoT devices cannot locally perform the analyses to detect when
a microburst (weather event) is forming, or when a harmful
chemical is released maliciously or leaked accidentally from
an industrial source. Therefore, it is common to backhaul a
continuous stream of data from the sensors to a data center
for processing. In-turn, human operators rely on the data center
service to provide the analysis results in a timely manner.

The network between the IoTs and the data center and the
human operators is assumed to be dynamic – its capacity
and load changes, although not instantaneously but not com-
pletely predictably either. Furthermore, link and node failures
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may also occur. Under these conditions, reliance on a single
centralized data center is unlikely to always provide quality
analytic results in a reliable and timely manner. At the same
time, we believe it is not always the best strategy to move all
computation closer to the IoT sources, which may introduce
unwanted delay and outage for the time constrained operators.

We are investigating adaptive methods for fitting many
application tasks over time into dynamic networks under
application and mission constraints. We suggest a simple
model for such a placement here. First, the paths to compute
locations from the edge-devices and the available compute
power (and from application to operators) must be able to
accommodate the load. For realism, resources enabling in-
network computing and communication should be assumed
to be non-uniform. Second, applications may be composed
of more than one interconnected task which may be repli-
cated into multiple locations. Replication will require resource
management algorithms to reason about data consistency
overheads. Furthermore, interconnected tasks (e.g., a micro-
services service chain) with strong levels of affinity (e.g., com-
munication depedencies) implies that if tasks are not placed
together the collective performance could degrade further.

To effectively disperse computation and data into the net-
work, we are developing decentralized algorithms that balance
resource availability and utilization, task or resource affinities,
and end-user demand or expected compute and communication
load, as an aggregate program [6]. The program peforms
continuous monitoring of the resource state and application
performance, and produces plans and actions for managing
state. Our design is inspired decentralized divide-and-conquer
architectures, where mixed-tempo global and a regional algo-
rithmic layers reason about the constraints suggested above.

At the global layer, we are formulating distributed constraint
optimization problems (DCOP) that function as a slower paced
overall strategic reasoning system. As an output, the global
layer provides resource allocation plans indicating how much
application computation and data can be placed within smaller
logical areas in the nerwork, called regions. At the regional
layer, we are applying well studied load balancing techniques
to rapidly respond (i.e., tactically manage) to on-going demand
while staying within the bounds of the DCOP plan. To support
in-network task allocation the regional layer actively manages
the lifecycle of local computation. DNS delegation redirects
edge-IoT devices’ name service lookups to newly started local
resources that can process their data. To ensure stability across
the global and regional layers, we are applying control theoritic
analyses to identify sources of destabilizing volitility.

Early results using our current prototype is promising. We
highlight a result of an experiment (java-based simulation)
in Fig. 2, which demonstrates application migration to avoid
overloaded network paths leading to a centerlized data center.
In this experiment, the data center has infinate capacity and
there are 100 nodes of varying capacity within the network
by design. At the start, the clients use one or more of the
three streaming applications hosted in the data center. Each of
these streaming applications can be migrated into the network.

There is a network region labeled C, from which paths to the
data center are severerly congested. This impacts the clients
of the three services. As a client scoring function, we consider
the network throughput achieved by three types of streaming
sensors (i.e., the path between the edge and application). In
the case where throughput drops below a desired threshold, we
score a failed request. In the case where the sensor throughput
is above the threshold, we score a success.

In Fig. 2, we graph the results of a 20 minute execution us-
ing a dense test topology and the configuration above. Initially,
due to experiment design, some of the client requests fail.
As our system measures demand and congestion, the global
and regional algorithms satisfice demand and trigger task
migtration. Near time 400 seconds, task migration completes
and future failures are avoided.

Fig. 2. Experiment Showing Benefits of Task Migration into an Edge Region.
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Scheduling of Smart Factories using Edge Computing and Clouds

Piotr Dziurzanski, Jerry Swan and Leandro Soares Indrusiak

Abstract— Reconfiguration-as-a-Service is an emerging trend
for dynamic smart factories. This approach exploits cloud-
based services to continuously optimise the performance of
manufacturing systems. The edge computing paradigm, on the
contrary, aims at performing the whole computation at the
edge of the network, close to the data sources. In this paper, a
trade-off between these two possibilities is analysed. A value-
based criterion is proposed for executing optimisation engine
either in a cloud or at the edge. Experimental results determine
the ranges for both the cloud computation cost and the edge
computer’s speed in which manufacturing scheduling leads to
higher profits.

I. INTRODUCTION

One of the emerging trends related to smart factories
is to migrate some computational tasks (e.g. scheduling of
manufacturing processes) from remote clouds in order to be
closer to devices that are the source and/or target of such
computing, i.e. to the edge between the IoT’s things and
the network [1]. One of the key predictions discussed in
the IDC report [2] was that in the near future almost half
of IoT-created data will be stored, processed, analysed and
acted upon at or close to the network edge. This migration
is expected to be beneficial in terms of response time, relia-
bility, security and cost effectiveness [3]. It may however be
argued that whether a certain computation is to be performed
in a cloud or at the network edge should be a dynamic
decision. That is, it should be based on the predicted gains
and costs of both situational alternatives, rather than decided
statically without any situational awareness. In Ismail et
al [4], Docker containers were proposed to be executed
at the edge. The same containers can be executed in a
cloud as well (e.g. by using IBM Cloud Functions

1) even
in the case of different os/architecture combinations (thanks
to the experimental Docker feature named Docker manifest).
Therefore, the decision on where to execute a certain con-
tainer can be made dynamically considering the current edge
node utilisation or network bandwidth, and also taking into
account the urgency of the computation. In most cases, for
efficiency and security reasons it may be beneficial to start
computation at the edge, since it decreases network traffic
and avoids public/shared networks and servers. However, if
the computation performed at the edge progresses too slowly,
it can be migrated to a cloud. Such approach requires a
method to compare the predicted execution time in both edge
and cloud. In this paper we follow a method that predicts the
benefits of further manufacturing optimisation proposed in
ref. [5]. According to that method, each manufacturing order,
which requests the production of a particular commodity,
is equipped with a value curve, that models the value,

Department of Computer Science, University of York,
Deramore Lane, Heslington, YO10 5GH, York, UK
{piotr.dziurzanski,leandro.indrusiak}@york.ac.uk

1https://console.bluemix.net/openwhisk
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Fig. 1. General scheme of the proposed approach implementation

expressed in the monetary units, yielded by the manufac-
turing order over time. This value curve can influence the
optimisation process as follows: since further search-based
schedule optimisation is occupied with the cost of the cloud
nodes performing the computation, it has been shown in that
paper that it may be beneficial (grounded in terms of overall
monetary cost) to prematurely stop the optimisation and
apply the best results found so far. In this paper, we propose
to extend that model with the possibility of performing
the optimisation at the network edge. Using the proposed
technique, on obtaining a manufacturing order, an agent
decides not only when to finish the optimisation process,
but also whether the computation should be performed at
the edge or in a cloud, comparing the predicted monetary
gains for all these options.

II. PLATFORM AND APPLICATION MODEL

The class of scheduling problems analysed in this paper
concerns manufacturing in which the value gained by an end-
user depends on both optimisation solution quality and the
time taken by the optimisation process itself. The optimisa-
tion process is performed either at the network edge or in a
cloud. Suitable application and platform models are proposed
below.

A. Platform model

At the network edge, there is a set of k computing nodes
N = {N1, . . . , Nk} capable of executing one or more
containers (i.e. each node runs a typical Docker container
engine). The nodes are heterogeneous and their response time
difference is expressed with so-called calibration coefficient

⇣x, x 2 {1, . . . , k}. ⇣x denotes the ratio between empirically
measured response time of a set of container benchmarks
on node Nx and the averaged response time of the same
set of container benchmarks executed on a reference unit in
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a public cloud serving as an alternative execution platform,
as shown in Fig. 1 (the details of this figure are explained
later in this paper). The benchmarks’ response times on
a reference unit include the communication cost and the
container initialisation time.

In ref. [5], it was assumed that the schedule optimisation
engine was containerised and executed in a public cloud
using a function as a service facility, which significantly
reduced the initialisation time and monetary cost, in com-
parison with the more prevalent Containers as a Service
paradigm. However, such containers can also be executed
at the edge of the network, potentially decreasing the opti-
misation cost. Only when it is predicted that further local
optimisation at the edge is likely to be less beneficial than
remote execution, are the containers migrated and executed
in the cloud.

B. Application model

The application considered in this paper is related to
manufacturing scheduling optimisation in a smart factory.
At time instants not known a priori, manufacturing orders
are submitted. Each of these orders usually concerns the
production of several items of a certain product. The role
of optimisation is to allocate the manufacturing processes
(such as mixing powders, cutting parts etc.) to different
machines, select the most appropriate machine modes (e.g.
thereby trading production time against energy efficiency)
and schedule these processes in time, following the depen-
dency relation between these processes. As discussed for
example in ref. [5], such optimisation problems are NP-hard
and thus various search-based heuristics are usually applied
to find an approximate solution.

Each optimisation process is performed dynamically and
concurrently to the manufacturing of the previous orders.
Consequently, optimisation results must typically be pro-
vided within a limited time span. As long as the factory
is busy with the previous orders, the optimisation time does
not matter. However, in the case of an idle factory, the time
spent on optimisation incurs ongoing factory maintenance
costs due to idleness. This phenomenon is well illustrated
with the value curve presented in Fig. 2. At time instant AT
a manufacturing order is submitted. The maximal possible
profit from this order is equal to Vmax, defined as the excess
of revenue over cost and denoted in monetary units. As
the factory is busy up to time instant D, processing orders
submitted and scheduled earlier, the profit value does not
change in interval [AT,D). However, after D, the profit
value decreases up to a certain point Z, where it reaches
0. If the optimisation process ends at time ET , the maximal

Master Master Master ...

1st stage 2nd stage

Slave S1,1

Slave S1,2

Slave S1,p

Slave S2,1

Slave S2,1

Slave S2,p

... ...

1 2

Fig. 3. Stages of the optimisation process

potential profit cannot exceed the value of the curve at ET ,
namely V C(ET ).

III. OPTIMISATION TRADE-OFFS

The scheduling optimisation is performed in a master-
slave fashion as illustrated in Fig. 3, in sequential stages
indexed with i = 1, 2, . . .. At each i-th stage, a set of pi
containers is executed in parallel by slave nodes. The global
master coordinates the execution of containers submitted by
the users. The master is responsible for serving the incoming
requests and allocates the containers to nodes, for example
using the algorithms proposed in ref. [6].

All containers Si,y , y 2 {1, . . . , pi}, are executed either
in a cloud or at the network edge. Each container gets the
encoded manufacturing order together with the best solutions
found so far as its input and after time ti,y returns the
minimal value found by the optimisation for the manufactur-
ing cost of that order, fi,y , together with the corresponding
solution.

If Si,y is executed on edge node Nx, its CPU time
slot is proportional to the so-called CPU shares ⇠i,y 2
{1, . . . , 1024} (the value of the maximum share is taken
directly from the Docker’s –cpu-shares flag). Assuming that
the sum of all the CPU shares of containers executed on
node Nx equals ⌅x, container Si,y gets #i,y,x = ⇠i,y/⌅x of
the CPU time of node Nx.

Initially, the execution time of the containers Si,y is diffi-
cult to be predict accurately. However, as all these containers
are constructed from the same container image and perform
optimisation of the same problem size, the workload inside
these containers is similar. Thus the response time ti,y of
each container Si,y can be measured and used by the master
node to predict the future response times at the following
stages, as described subsequently.

Due to the change of a potential maximal profit from a
certain manufacturing order over time as described by a value
curve, a clear trade-off between the optimisation time and
the optimisation quality can be identified. As a search-based
heuristic keeps the best result found so far and continuously
explores the search space up to the fulfilment of a certain
stopping criterion, it can provide a sub-optimal result at any
time. For example, ref. [5] proposed that for the master-
slave architecture introduced earlier (Fig. 3), after the i-
th stage the master node gathered the optimisation results
fi,y from containers Si,y and decided if the continuation of
the optimisation process, i.e. triggering the next optimisation
stage, was likely to be beneficial considering the given value
curve. A similar approach is applied in this paper.
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Fig. 4. Stage execution time example

Performing the optimisation at the edge is assumed to cost
nothing in terms of money as the edge devices are owned
by the smart factory and their idle time can be viewed as
wasted. This is in contrast to the optimisation cost in a cloud,
which for any i-th stage is nonzero and upperbounded with
� · ti · pi, where � is the cost of a single container execution
per one time unit2, pi is the number of slaves executed at
the i-th stage and ti = maxy2{1,...,pi}(ti,y) (see Fig. 4). The
execution cost in both these locations can be described with
equation

ci = �i · (� · ti · pi), (1)

where �i equals 1 if the i-th stage is executed in a cloud
or 0 otherwise. Using these notations, the manufacturing
profit yielded by the best solution found in the i-the stage is
described with equation

Pi = V C

0

@
iX

j=1

tj

1

A�
iX

j=1

cj � fi, (2)

where fi = miny2{1,...,pi}(fi,y).
After finishing the optimisation process at stage i, the

values of ti+1 and fi+1 can be predicted via extrapolation,
for example using the Bluirsch and Stoer algorithm [7]. For
history lengths of 3 or less, such extrapolation is either
undefined or else the result was empirically determined to
be inaccurate: the predicted value of fi is then given by the
best fitness found so far and that of ti by the last (actual)
processing time.

If the following, (i+1)-th stage is processed at the edge,
value t̂ei+1 predicts its execution time and f̂i+1 predicts the
lowest value returned by the slaves. Both these values can
be used to predict the profit generated at the edge after the
subsequent stage as follows

P̂ ei+1 = V C

0

@
iX

j=1

tj + t̂ei+1

1

A� f̂i+1 �
iX

j=1

cj . (3)

Let us assume that at the i-th stage, executed at the edge,
the longest computation (lasting ti) has been performed by
the x-th node with calibration coefficient ⇣x and whose
fraction of CPU time for the related container equals #i,y,x.
This container is predicted to be executed for t̂ei+1 in the
following stage if executed at the edge. Then the execution
time in a cloud of the same container can be assessed with
formula

2For example � = 0.000017 USD per second of execution per GB of
memory allocated using IBM Functions in August 2018.

t̂ci+1 =
t̂ei+1

⇣x · #i,y,x
(4)

Then the profit generated after the subsequent stage exe-
cuted in a cloud can be estimated with equation

P̂ ci+1 = V C

0

@
iX

j=1

tj + t̂ci+1

1

A� f̂i+1�
iX

j=1

cj� ĉi+1. (5)

If the current, i-th stage is executed in a cloud, the
execution time of the following stage at the edge can be
assessed with equation

t̂ei+1 = t̂ci+1 · ⇣x · #i,y,x, (6)

and substituted to equation (3) to estimate the corresponding
profit. Value t̂ci+1 is also used to estimate ĉi+1 using
equation (1).

The stopping criteria are evaluated by the master node
after each stage i. The predicted profit criterion checks the
prediction if the execution of the subsequent stage is likely
to increase the profit generated by the optimised process or
not, regardless it is executed in a cloud or at the edge

Pi > max(P̂ ei+1, P̂ ci+1). (7)

Moreover, if P̂ ei+1 � P̂ ci+1, the following stage should
be executed at the edge. Otherwise, the containers shall be
executed in a cloud.

The benefits of similar stopping criteria in a cloud envi-
ronment has previously been evaluated [5]. In the following
section, we apply this approach to a platform consisting of
both edge machines and a cloud.

IV. EXPERIMENTAL RESULTS

The edge execution platform described above has been im-
plemented and used together with the original Docker engine
in form of two software modules, namely DockerManager

and DockerWorker. The former one corresponds to the master
node and is run on a machine where Docker may or may not
be installed, whereas the latter, executing the slave nodes,
requires the presence of the Docker daemon. These modules
are depicted in Fig. 1.

In order to evaluate the technique described in this paper,
30 manufacturing orders considered in ref. [5] have been
selected to be scheduled in a certain factory. In that factory,
there are 8 machine types and each machine can operate in
different operating modes, influencing both the processing
time and the consumed energy, which in turn influences the
manufacturing cost. The number of manufacturing process
steps in these orders ranged from 18 to 59. Each of these
steps needs to be allocated to a machine operating in a certain
mode. The parameters for the associated value curve are
AT = 0, D = 250 s, Z = 500 s and Vmax = 5000 GBP,
which means that such amount of money would be gained
by a plant if both the production and the scheduling cost
nothing.

In the first experiment, the migration between cloud and
edge computation has been disabled and both these environ-
ments have been used for the first stage. The computation
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Fig. 5. Profit difference between edge and cloud execution for various
average calibration coefficient values and container execution costs

is then performed using the same platform, edge or cloud,
from the first stage up to the computation completion. The
average calibration coefficient ⇣x ranges from 0.1 (response
time from the edge is 10 times longer than from cloud) to 2.0
(response time from the edge is two times faster than from
the cloud), and the container execution cost per second, �,
varied from 0.000001 GBP to 0.5 GBP. For each setting,
the experiment has been conducted 100 times, 400000 runs
in total. The difference between the total profit computed
in the edge and in the cloud are presented in Fig. 5. Not
surprisingly, the time needed for optimisation in case of slow
edge computers (i.e. with low average calibration coefficient
⇣x) causes that the computation is usually finished at the
time when the associated value curve assumes low values.
For extreme case of edge machines with, on average, 10
times lower response time than a cloud (average ⇣x equals
0.1), even assuming the most expensive cloud computation
cost (� equals 0.5GBP) leads to high total differences in
profits (close to 10000 GBP for the considered set of
orders). However, with the increase of the edge machine
speed, this difference changes significantly. Assuming typical
cloud computation cost in 2018 � = 0.000015 GBP, edge
computations becomes slightly more beneficial (107 GBP
difference) for average ⇣x equal to 0.8. For the fastest edge
computers considered, with a response time twice as fast
as cloud computers, this difference is equal to almost 1600
GBP. As a similar value is achieved even for much cheaper
cloud computation (� = 0.000001 GBP), this proportion will
hold even after the forseeable significant decrease in cloud
computation cost. In total, processing in edge returned above
8% higher profit than computation in a cloud.

In the next experiment, the slave container migration
between edge and cloud is permitted. The computation starts
at the edge but migrates to a cloud if the predicted profit
of the next stage computed in a cloud is higher than its
equivalent predicted for the edge. In the analysed range,
the number of migrations from the edge to cloud depends
strongly on the ⇣x parameter and to a lower degree on �. For
the slowest cloud (⇣x = 0.1), the migration from the edge to
the cloud has been performed in 51% of cases on average,
and then decreases almost linearly to 13% for ⇣x = 1.0,
i.e. when both the edge and cloud have the same response
time on average. For faster edge (⇣x > 1.0), not a single
migration has been observed. For all the considered cases, the

possibility of migration to cloud improved the profit slightly,
yielding 1% above the execution in edge and 9% higher
profit than computation in a cloud. However, this option
is more beneficial in case of slow (or busy) edge. For the
slowest case (⇣x = 0.1), computation performed solely at
the edge yields 22% worse result than a cloud, whereas the
possibility of migrations decreases this gap up to 14%. The
migration option may be then viewed as quite beneficial in
adverse situations, which remains unused in case of a higher
computational power available at the edge.

V. CONCLUSION

This article describes a distributed architecture that pro-
vides general and scalable support for the ‘Just in Time’
manufacturing process envisioned for smart factories. The
architecture is equipped with a novel adaptive stopping
criterion for optimising profit obtained from a set of man-
ufacturing orders which not only decides on the computa-
tion termination but also steers the computation migration
between the edge and cloud. As the optimisation engine
has been encapsulated into a stateless container, such mi-
gration is occupied with a minimal overhead. According
to the experimental results, optimisation at the edge leads
to a slightly better overall profit, and in case of slow or
busy edge computers, the possibility of container migration
to cloud decreases the computation speed gap between a
cloud and edge. Since using the proposed approach leads
to comparable if not better profits than optimisation solely
in a cloud, considering the additional benefits form edge
execution, such as reduction of outbound/inbound network
traffic, increased reliability and security, edge platform can
be viewed as a promising alternative to cloud computing even
for computationally costly tasks.
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Abstract— Creation of virtualized network instances, aka net-
work slicing, is one of the fundamental architectural paradigms
that allows 5G to meet widely diverse service requirements.
Recent work has shown the benefits in dynamic rather than
static allocation of physical resources to these virtual slices
as well as the feasibility of creating and enforcing slices
dynamically even in the radio access network. Encouraged
by this, we make a case for offering network slicing as a
real-time service to end users. This is a significant shift from
the predominant business model wherein content providers
own these slices and end-users are subject to the resource
allocation policy of content providers. By instead enabling users
to customize and acquire resources for their desired session
performance spontaneously, real-time network virtualization as
a service allows diverse applications to drive their network
allocation. This is particularly useful for real-time applications
with immediate and potentially time-varying resource needs
such as predominant use-cases of cyber-physical systems and
edge computing. The operator’s centralized control of resources
is reduced and thereby also the burden of meeting sufficient
traffic demand in a slice under sparse availability. Instead,
this burden is shifted to the design of incentive schemes that
allocate these ad-hoc dynamic virtual slices of limited physical
resources to users/devices/applications that value them the most.
While enabling diverse service requirements in a decentralized
fashion, this brings up new challenges and opportunities in
designing mechanisms that capture the wireless end device’s
spontaneous session needs and valuations.

I. NETWORK SLICING - CURRENT MODEL AND
CONCERNS

One of 5G’s key architectural innovations, network slicing,
results from the aggressive network function virtualization
that enables complete programmability of network compo-
nents [1]. Even radio resource allocation and scheduling
policies, previously coupled with the physical hardware in
the base station, are virtualized and hence programmable.
As a result, the network may be divided into virtual slices
that potentially span resources all the way from the edge
to the core of the network and are dedicated to satisfying
demands of a specific service level. This enables 5G’s vision
of supporting the highly diversified network needs of ex-
isting and emerging applications constituting cyber-physical
systems (CPS). Machine to machine scenarios (e.g., tactile
internet [2], telepresence [3]) that require low latency, high
bandwidth and high reliability simultaneously are integral
CPS use-cases, as are smart-city scenarios [4] that require

This work was supported in part by the Defense Advanced Research
Projects Agency (DARPA), under contract No. HR001117C0048.

periodic transmission of IoT data to the cloud and low-
latency computing resources at the edge for making real-time
actuation decisions. Simultaneously, the end users’ diversity
in network requirements and volume of data use also grows.

Virtual network slices catering to different service level
agreements (SLAs) emerge as the solution. The network en-
forces these SLAs by allocating sufficient physical resources
to a slice to satisfy the traffic demand [5]. While slicing
techniques have been explored extensively (in the mobile
core [6], [7], [8] and to some level in the radio access
network (RAN) [9], [10]), the usage models have not. Simply
put, how should end users/devices/applications (collectively
referred to as edge entities going forward) attempt to acquire
guaranteed service for themselves? A B2B (business-to-
business) model is predominantly assumed today, wherein
content providers work with the operators to define and
reserve slices specific to the resource needs of their content,
and thereby influence edge entities’ quality of experience
(QoE) for their applications [11], [12]. However, this model
has limiting consequences for slice usability and utility for

edge entities as well as slicing efficiency and operating costs.
Usability concerns: Offering slices as long-term contracts

(whether spanning hours or months) to internet content
providers or other types of service owners retains the model
of centralized resource control and renders a large part
of the diverse requirements and use cases of edge entities
unfulfilled. Previously at the mercy of the resource allocation
policy of a centralized network operator, now edge entities
and their network performances rely on the resource allo-
cation policy of the corresponding content-provider/service-
owner. This can be severely limiting. First, the edge entity
cannot acquire any SLAs for services it values if the service
owners have not acquired a dedicated slice from the network,
potentially also harboring net-neutrality issues. For example,
a user uploading a business-critical document to a server
within a tight deadline foreseeably does not have a specific
content provider that can allocate a guaranteed slice to com-
plete the task in time. Similarly, in emerging deployments
of dense sensors in smart buildings and offices, the sensing
systems might have different services to send their periodic
data to [4] and may not be able to fully anticipate their future
network needs that depend on these services.

Even in the few slicing architectures that account for
a B2C (business-to-customer) model alongside B2B, static
contracts between the customer and the operator for slices
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are assumed [11]. Alternatively, content-provider sponsored
slices are assumed to exist in which case the architecture
tackles the problem of slice discovery and association [13].
This system is hence of limited use to a large portion
of the heterogeneous edge entities to whom guaranteed
SLAs would be expected to add significant value. Due to
reliance on service owners to procure and offer these, or the
infeasibility of accurately forecasting their changing resource
needs that may be ad-hoc and temporal [14], they realize
limited utility from slicing. The failure of these relatively
static B2C models to leverage the full power of the network’s
dynamic virtualization capability is alluded to by Zhang et
al. [15].

Second, a central content provider or network operator
does not know how to prioritize among its users. For
instance, a provider like Skype contracts a slice that delivers
low latency and high bandwidth. This enables high-quality
Skype calls for users admitted to the slice but physical
resources within the slice continue to be limited. Presumably,
when multiple users make Skype calls at congested times,
they compete for admission into the slice and have no way
to influence the outcome, just as is the case today. For
example, a user cannot demonstrate to the slice allocation
algorithm their higher call utility value for a job interview
over a recreational call from another user. Hence, while
admission into a slice largely guarantees slice-specified
SLA, admittance itself is entirely controlled by the
centralized operator or the content provider in any case.

Efficiency concerns: Apart from the usability limitations
in the centralized slice-ownership model that do not cater
to diverse CPS use cases, severe implications on resource
utilization have been recently studied [16]. By way of this
slicing model, traffic multiplexing capacity is significantly

diminished in the network. Resources of a slice may be
multiplexed only between the traffic demand for that slice
rather than between all traffic demand over all resources, as
possible today under ad-hoc resource provisioning [5]. Given
the inherently sparse nature of radio and other resources in
the edge, these utilization losses are highly undesirable.

The lowered utilization efficiency in slicing is empirically
analyzed by Marquez et al. [16]. The imposition of a guaran-

teed time fraction in advance as part of slice specifications,
i.e., a guarantee that at least a certain percentage of all traffic
demand for that slice will be served satisfactorily over fixed
time windows, has a steep cost for the operator. Due to the
spiky nature of traffic demand, especially closer to the edge,
the provider must provision for peak demand within these
time windows to ensure the guaranteed time fraction, leading
to efficiency loss as high as 80%.

Relaxation of this time window or time fraction does not
help beyond a certain extent[16]; efficiency loss may only
further be improved if slices acquire frequent reconfigura-

bility. For example, if physical resource allocation to slices
can be reconfigured every 30 minutes, then efficiency loss
is reduced to a best-case scenario of about 20%. Beyond
this, the unavoidable effect of multiplexing loss inherent in
slicing dominates with no substantial further improvements.

As the authors note, given the expenses of operating the
network infrastructure and operationalizing such virtualized
capabilities, such high resource utilization losses may pro-
hibit monetary feasibility of realizing this model.

These usability and economic viability concerns are im-
plicitly addressed in the model we propose. In this work,
we introduce the concept of offering slicing as an ad-
hoc service to edge entities who, consequently, drive their
resource allocation and thereby the QoE for their network
sessions. As we detail in the next section, creating network
slices in response to edge entities when they express specific
SLA needs alleviates the multiplexing loss from up-ahead
resource dedication to slices. It creates new opportunities for
monetization of value-added services to the network while
empowering edge entities and adding value to them.

II. SLICING AS A SERVICE TO EDGE ENTITIES

As Andrews et al. point out [17], network virtualization in
5G revives a radical concept that first emerged in the 1990s:
“the provision of user-controlled management in network el-
ements”. By offering network slicing as a service in real time
to edge entities instead of exposing it via periodic contracts
to content providers, 1) current usability and efficiency issues
are addressed and 2) new incentive challenges are introduced.

We first note that this proposed shift in the service model
of network slicing has significant impact on utilization ef-
ficiency. In their empirical evaluation, Marquez et al. [16]
show that efficiency loss with slicing becomes negligible
only when there are a minimal number of slices (i.e.,
one dedicated to high-volume, SLA-driven traffic and one
mainly serving low-volume, SLA-free traffic) with frequent
reconfiguration of assigned physical resources to the slices.
In such a scenario, statistical multiplexing gains are largely
re-captured, since they are higher when done over a larger
portion of the physical resources and traffic. This is best done
by maintaining a limited number (if any) of larger slices
(perhaps two as above), and instead largely deciding the
SLA feasiblily of a flow and its requisite physical resources
in real time. A slice is created ad-hoc if the flow with its
customized SLA is deemed feasible and sufficient physical
resources dedicated to ensure performance isolation. In-fact,
recent work [9], [10] has shown that slices can be created
and their isolation enforced dynamically even in the highly
contended RAN layer while simultaneously maintaining high
radio efficiency, making our proposed model feasible.

Secondly, such an offering allows entities with diverse
needs (and uncertainty or variation in their future resource
requirements, as in several CPS scenarios) to use the system.
Further, virtualization shields the edge entity from complex
radio-layer details and predictions in computing the resources
they need. Edge entities may simply relay requisite network
service in terms of application-layer needs (such as bitrate
and latency) and have operator compute the mapping to
physical resources. Hence any application may procure its
session needs, whatever they may be.

In the earlier Skype example, however, we see that the
resource needs of a user are not simply the application
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or device’s inherent network requirements; users also hold
subjective preferences and relative utilities for network ses-
sions. These subjective utilities are especially important to
capture when edge resources are limited and not every slice
request can be met. To enable users to drive their resource
allocation, it is not only important to offer suitable slices (or
equivalents) in response to their diverse slice specifications,
but also allow them to influence its successful allocation
by expressing their utility for it. The burden is then placed
on the operator to design an effective incentive scheme that
aligns the entity’s stated utility with its true valuation. The
operator may now monetize its virtualization capability by
offering it as a real-time value-added service to edge entities,
while retaining much of its desirable statistical multiplexing
capability. Hence, we realize the fundamental shift of
control from the operator/content-provider to the edge
entity, which now drives its network resource allocation
in real time as aligned with its incentives.

III. THE ROLE OF INCENTIVES

Historically, edge entities have had limited scope to ex-
press the utility they derive from network resources to oper-
ators. Prevalent mobile data plans are month-long contracts
that do not capture finer-grained information about user
preferences and utilities. The current trend towards high
diversification of applications and the network services they
require, combined with empirical observations that heavy
users of cellular internet exhibit non-periodic, sporadic us-
age [18], indicates that this lack of fine-grained information
likely induces a considerable loss in value for both the
operator and edge entities. We posit that offering network
slices as a service in real time re-captures this source of
value by allowing operators to offer, and users to pay for,
services customized to spontaneous user needs.

Capturing end-user preferences in the form of their utility
or valuation and using this to drive resource allocation mod-
els is the aim of incentive design mechanisms. The seminal
work on Paris Metro Pricing [19], for example, allows users
to state their value for the supported QoS levels by explicitly
choosing their tier and paying accordingly, assuming that
the network can guarantee these tiered performances to
all users who pay the price. Since then, several incentive
mechanisms for network usage have been proposed with
varying goals [20]. However, there has not been significant
attention on the problem of capturing user (or generic entity,
with the rise of CPS) valuations in real time for application-
oriented session preferences. Until now, it has been difficult
to realize dynamic QoS policies in today’s network archi-
tecture with limited flexibility. However, 5G’s virtualization
features makes such a paradigm entirely feasible. We turn
our attention to several open challenges in designing these
incentive mechanisms and, more broadly, in realizing a fully
functional offering of slicing as a service to edge entities.

IV. RESEARCH CHALLENGES

Incentive design: The operator must benefit monetarily
by offerring virtualization capabilities to edge entities. Since

slice specifications and their resource costs are hereby known
only in real time, the operator must price slices in real time.
On the other hand, dynamic pricing schemes have been
known to have usability limitations [21] since typical end
users are budget-constrained and make economic choices
over longer time spans. Building user-friendly mechanisms

for dynamic pricing that provably incentivize users to state

their true valuations for customized slice specifications is

an open problem. In fact, the most user-friendly method
might be to develop agents that act as a proxy for the
edge entity in engagements with the network. Once the
entity’s preferences are captured by the agent, such as budget,
applications for which service guarantees are desired, and
preferred resolution rates, the agent may transparently engage
with the network to acquire a guaranteed slice. The design
of such agents and the various learning tasks they may have
to perform (see below) poses questions.

Slice Parameterization: Edge entities must state their
desired SLAs when requesting guarantees. Since network
requirements for a session are best known by the correspond-
ing application (rather than the user), we presume that the
application would transparently engage with an agent on the
phone to convey requisite bandwidth/latency. These SLAs
must also capture user-facing parameters such as preferred
resolution and duration and location of consumption. Rather
than the entity explicitly engaging with the network to
specify this for each network session (thereby potentially de-
grading usability), agents may instead learn from the entity’s
preferences and usage patterns to estimate these parameters.
Depending on the incentive scheme being employed by the
network, the agent may also need to estimate the entity’s
valuation for the slice and corresponding utility-optimizing
slice specifications in real time.

Cost of Dynamicity: Since CPS traffic is expected to be
largely machine driven [2], establishing slices in real time
would likely involve complex and frequent communication
of the requirements between the various edge entities and
the network. While recent work [9], [10] has established
the feasibility of dynamic RAN slicing, further work is
required in studying the signaling overhead/stress caused by
slice requests. Further, the turnaround times for resolution of
dynamic slice requests must be minimal to facilitate ad-hoc
sessions. This requires further study of the delays incurred
by the incentive mechanism in determining allocations.

Slice Policies: The operator may wish to enforce generic
slice policies to allow opportunities for other edge entities
to acquire slices. For example, by enforcing a slice occupa-
tion duration of no more than thirty minutes, the limited
edge resources are guaranteed to free up periodically for
occupancy by other entities. This may also influence the
operator’s revenue and incentive mechanism, as the mar-
ket rates for resources presumably change under congested
times. However, such policies involve tradeoffs. For example,
periodically terminating slices may expose the operator to the
risk of decreased market rates during the subsequent time
period as demand drops off.
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V. OUR PRELIMINARY AND ONGOING WORK

We currently explore incentives for dynamic slice offerings
in the context of real-time applications. Sessions of real-
time applications are especially hard to provision for due
to their immediate resource needs that do not lend to buffer-
based adaptations. We enable such applications to acquire
guaranteed QoE for their sessions by negotiating with the
operator for a slice of their desired SLA.

We first introduce the slice model considered by Marquez
et al. [16], where a slice is fully (pre-)specified as z = ( f ,w),
where f and w are such that the operator satisfies at least
a fraction f of the slice demand, averaged over discrete
time windows w. The operator provisions for peak demand
to satisfy f , thereby necessitating additional deployment of
physical resources and considerable economic strain. In our
entity-driven slice model, a requested slice or SLA may be
fully characterized as zt = (s(t,d),c), where s(t,d) is the dy-
namic slice specification of the edge entity for consumption
duration d at time t and c is the cost of the slice. A slice s is
entirely feasible only if it complies with operator’s policies
and resource availability. The slice cost c may or may not
be conveyed by the network (for example, prices may not be
explicitly set in an auction bidding scenario). As seen in this
model, the operator only needs to decide if enforcing s is
feasible, without the burden of guaranteeing the minimum
traffic fulfillment f . Instead the burden of fulfillment is
offloaded to the incentive scheme. If the entity’s valuation is
sufficiently high, its traffic is served by the requested slice,
otherwise it is turned away.

Based on this, we provide a combinatorial auction mech-
anism for edge entities to compete for slice allocation in
periodic real-time auctions that maximize social welfare. By
exploiting the nature of real-time applications, we achieve
auctions with winner determinations that are simultaneously
fast and incentive compatible, properties not readily achieved
in this setting. An agent, on behalf of the edge entity, submits
a bid b for zt while adhering to the entity’s daily budget,
thereby addressing usability concerns of dynamic pricing
models. We also explore learning mechanisms for the agent
to learn the edge entities’ QoE preferences and place bids
proportionally, making the slice procurement process more
transparent and user friendly.

VI. CONCLUSION

We address the diversified service requirements for 5G
networks and the resource scarcity that characterizes the
network edge through consideration of user-driven mecha-
nisms for real-time resource management. We propose to
offer these limited resources as virtualized network slices
tailored for the network needs and aligned with the incentives
of edge entities. We highlight the promising and feasible
directions for such dynamic and ad-hoc slicing, and the
efficiency and usability gains that can be achieved using a
user-driven approach. We outline the research challenges in
realizing slicing offerings, with a focus on incentive design
and usability. Finally, we provide a brief overview of our
ongoing work in this space.
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Abstract—The distributed cloud with edge data centers can be
used to host mission-critical control applications. In the paper an
MPC control approach is used. A test bed that allows physical
experiments using a 5G base station, an edge node, and two
remote data centers is presented.

I. INTRODUCTION

The future networked society, empowered by hundreds of
billions of connected devices, will fundamentally change the
way we need and do compute. Already today, the limited
computing and storage capacity of end-user and Internet of
Thing devices - such as smart phones, laptops, cameras, and
sensors - are complemented by remote data centers. However,
there are limitations on what kind of interactive and real-
time applications that can be deployed on today’s cloud due
to its inability to provide guaranteed end-to-end performance
with low communication delay and little jitter in that delay.
A consequence of this is, e.g., that closed-loop control ap-
plications with hard real-time constraints currently cannot be
deployed in the cloud. One major inhibitor is the delay in
excess of 50 ms incurred by today’s wireless radio technology,
i.e., 4G/LTE. However, with the introduction of 5G, the radio
access delay is poised to drop to a few stable milliseconds,
removing this hurdle. Still, latency between the base station
and the remote data center will typically be too long for many
applications. Fog computing is a proposed remedy to this
problem. A fog computing infrastructure is hyper-distributed
and resource heterogeneous, ranging from user-near data cen-
ters at the edge to traditional distant data centers. The edge
data centers are typically small data centers associated with a
base station, a radio cell, a production plant, some transport
system infrastructure, or an office building, see Fig. 1. In the
fog, software applications can be dynamically deployed in all
types of network nodes to meet their individual performance
goals. A prominent use case for edge data centers are latency
sensitive closed-loop control applications, e.g., in process
control and automation, industrial robotics, or traffic control.
Another use case that is actually the driver for the distributed
cloud is the ongoing network function virtualization that takes
place in the telecommunication network itself. Instead of using
dedicated machines to implement different network functions,
e.g., firewalls, load-balancers, or intrusion detection devices,
one aims to implement them as software modules executing
in virtual machines or containers on top of cloud computing
infrastructure. The closer the virtualized network functions
comes to the radio base band processing the larger the need
for local data centers becomes. Once these data centers are

Fig. 1. Distributed fog cloud overview.

in place it is not unlikely that excess capacity will be sold
using similar business models as what is used in today’s cloud.
The contribution of this position paper is the presentation of
a use case for edge data centers: mission-critical control over
the cloud. Model Predictive Control (MPC) [1] is a control
technique that fits naturally for implementation in the cloud.
A 5G-based fog computing test-bed is briefly described with
which one can conduct real-time experiments with MPC over
the cloud including support for dynamic migration of MPC
controllers between the different nodes in the distributed cloud
using the Internet of Things (IoT) framework Calvin [2]. For
more details about the test-bed see [3].

II. DISTRIBUTED CLOUD CHARACTERISTICS

In the distributed cloud compute and storage services are
provided in every node from the remote data center to the
edge data center in addition to what is provided by the end-
user device. The typical control-related characteristics of this
scenario are as follows. The closer to the remote data center,
i.e., ”the further up in the sky”, the longer the communication
delay will be, the shorter the computational delay will be
(more powerful servers), and the larger the capacity will be
(more servers). From a control performance point of view
deploying the controller in the cloud typically involves a
trade-off between the increased communication delay and
the decreased computational delay. However, deploying the
control computations in the cloud also has other characteristics
than the more latency and performance related. An advantage
could be the potential access to additional sensor data and
more and better models, e.g., obtained using machine learning.
A disadvantage could be that the potential points of failure
increase and that, due, e.g., to failures or contention, the
computations may have to be migrated to some other node
in the distributed cloud with different latency characteristics.
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III. CONTROL OVER THE CLOUD

A natural question to ask is what type of control that may
benefit from cloud deployment. In industrial process control
the basic control is often provided by Proportional, Integral,
and Derivative (PID) controllers. These controllers require
very few computations, e.g., around 15-20 lines of C code for a
good PID controller including logical safety guard code. Since
they typically also guarantee a basic level of performance,
safety, and stability it is not recommendable to place this in the
cloud. Instead it is the control and planning that is performed
at the supervisory control level and above, that are the natural
candidates for cloud deployment. In this paper the focus
is Model Predictive Control (MPC), a common supervisory
controller type. In an MPC the control signal is obtained
through the periodic solution of an optimization problem each
time new sensor data is available. The advantages of MPC
are that it is a multi-input, multi-output (MIMO) controller
and that it is able to guarantee that the control signal and the
process state fulfill user-defined constraints, e.g., constraints
on the maximum and minimum values of the control signals.
The disadvantage is that it is compute-intensive and that the
execution time can vary substantially, typically more than one
order of magnitude, from one invocation of the MPC to the
next. This typically has to do with whether the constraints are
active or not. The output of the MPC, i.e., the control signals,
are used as reference or setpoint signals for the underlying
basic controllers. Each invocation of the MPC generates a
sequence of control signals, consisting of the control signal(s)
to apply at the current sampling instant, at the next sampling
instant, etc all the way up to the control signal to apply at the
sampling instant given by the current sampling instant plus the
horizon. Only the first of these signals is sent to the process
and then the same procedure is repeated at the next sampling
instant. The input to the MPC is in most cases the process
state. Typically an observer, e.g., a Kalman filter, is used to
estimate the state vector. Mathematically the MPC controller
can be expressed as

minimize
u0,u1,...

T�1X

t=0

L(xt, ut) + �(xT ) (1)

s.t. xt+1 = f(xt, ut) (2)
ut 2 U, xt 2 X (3)

where L(xt, ut) is the cost function that should be mini-
mized. The function �(xT ) assigns a different value specifi-
cation to the final (or terminal) state xT . The number of time
steps T is called the prediction horizon and specifies how
far into the future the controller anticipates control actions.
f(xt, ut) is the process model and (3) is a set of expressions
which state limitations to the plant inputs and the state space.
In the case of a quadratic cost function, a linear process model,
and linear constraints, the resulting optimization problem is
convex. For convex optimization problems efficient solvers
are available. However, the problem with large execution time
variations is still present. In the case of, e.g., a nonlinear

process model the optimization problem becomes non-convex.
Also in this case solvers are available but they in general
provide less formal guarantees on optimality etc.

A. Use Case: Process Control

One use case is process control. Here we assume that an
MPC controller is used for supervisory control and that it
normally is executing in an edge data center and that wireless
communication is used. If for some reason connectivity is lost
the MPC calculation must be migrated from the edge data
center to the local server, i.e., a backup MPC implementation
must be available in the local server. This type of migration is
an example of a vertical handover. However, due to lower
capacity it might not be possible to solve the same MPC
problem here. Several possibilities then exist. One is to solve
the same optimization problem, but less often, i.e. use a longer
sampling period for the MPC. Another possibility is to solve
a smaller problem, e.g., only covering the most economically
important parts of the plant. When the connectivity is restored
the MPC can be migrated back to the edge data center. Another
cause for migration could be contention in edge data center or
simply a fault in the edge data center. In that case the MPC
could either be migrated to the local server as before or be
migrated further up, e.g., all the way to the remote data center.

B. Use Case: Fuel Optimization for Trucks

Optimization of fuel consumption for trucks is a problem
that can be approached by MPC. Here the aim is to calculate
the optimal velocity for the truck that minimizes the fuel
consumption taking both geographical map information and
dynamic traffic information into account. One could envision
that the resulting MPC problem is too complex to be solved
completely on an on-board ECU. Hence, the MPC. or part
of it, need to placed in the edge data center. However, as
the truck moves from one cell to another the MPC needs to
follow, i.e., a horizontal handover should be done from the
previous edge data center to the edge data center that is now
closest to the truck. Also in this use case lost connectivity and
poor network coverage need to be handled. In that case the
optimization calculations have to be performed in the truck
most likely using a simpler formulation.

IV. A 5G-BASED FOG COMPUTING TESTBED

In order to evaluate the proposed approach a physical test
bed has been developed. An overview of the test bed is shown
in Fig. 2. The test bed consists of four main parts. As the
physical plant to be controlled a ball and beam process is
used. The control objective is to move to and keep the ball at
a desired reference position on the beam. The ball position and
the beam angle are measured using sensors. The mathematical
model for the process is a fourth order linear model with
the beam angle, beam angular velocity, ball position, and ball
velocity as the states. A Raspberry Pi adjacent to the process
is used as the local server. It communicates with the cloud
via the Lund Massive MIMO (LuMaMi) 5G base station [4],
[5]. Massive Multiple Input Multiple Output (MIMO) is the
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Fig. 2. System overview, from [3]

emerging Radio Access Technology (RAT) for 5G. Fundamen-
tally, massive MIMO is a Multi-User MIMO scheme, which
can simultaneously communicate with multiple devices on the
same wireless resource. Additionally, massive MIMO operates
with significantly more antennas than existing 4G/LTE-based
RATs (150 for LuMaMi). Massive MIMO’s spectral efficiency
is a few orders of magnitude greater than existing RATs. The
increased spectral efficiency can be used towards serving more
simultaneous devices, increase the throughput, or realizing
massive Machine Type Communication where a large number
of devices can be reliably served simultaneously at a latency 
5ms. A Linux server running with the PREEMPT RT patch set
[6] directly connected to LuMaMi is used to represent the edge
data center. The system also consists of the Ericsson Research
Data Center (ERDC) situated a few kilometers away from the
cell. There we run on top of Open Stack Pike and our instance
(a c4m16) has four Intel i7 cores registered by Linux as 1.6
Ghz, and 16 GB of RAM. Finally the system also consist of
Amazon Web Services (AWS) data center in Frankfurt where
a EC2 instance (a c4.large) with two Intel Xeon cores at 2.9
Ghz and 8 GB of RAM is used.

A. Calvin

As the cloud software platform we use Calvin. Calvin
is distributed, event-driven, server-less, and is based on a
dataflow programming model. The operational units of Calvin
are called actors (nodes in data-flow) while a runtime is
an instantiation of the Calvin application environment on
a device. In our present implementation there is a one-to-
one mapping between Calvin runtimes and compute nodes
and we therefore interchangeably refer to them simply as
nodes. An actors’ input and output messages, are known as
tokens. A set of actors and their interconnections constitute
an application. Actor states can be migrated and horizontally
scaled across nodes.The Calvin framework can autonomously
migrate and place actors to load-balance nodes and to meet
its own performance goals. However, application owners can
specify requirements for actors which tie them to a preferred

runtime. For example, a sensor reading actor can be required
to be placed on the node associated with the physical plant.

B. Experimental Evaluation

In order to evaluate the approach an MPC controller for the
ball and beam process was developed using the QPgen solver
[7]. Through Calvin this MPC controller can be migrated
between the different nodes in the system. To characterize and
verify the basic functionality of the system we ran the MPC
on each of the nodes. With each test we let the MPC control
the beam for 60 minutes while alternating the set-point of the
ball between the centre position and one side of the beam. To
be robust in this experiment, we used a large margin to the

Node RTT (ms) MPC (ms) Aggr. delay (ms)
Plant - - - 5, 5.2, 10 15, 15, 25
Edge 9, 10, 12 0.8, 1.05, 1.2 55, 80, 115
ERDC 12, 13, 18 0.1, 1.1, 1.5 60, 82, 130
AWS 26, 28, 35 0.65, 0.65, 0.7 100, 130, 225

end of the beam, meaning essentially that the likelihood that
the constraints would become active was small. The resulting
time measurements are shown in the table above. The first
column contains the network round-trip time (RTT) from the
Raspberry Pi (Plant) to the other nodes. The second column
shows the MPC execution time and the third the aggregated
latency including both the communication latency, the MPC
latency, and the overhead caused by the software platform.
Each cell contains three numbers: the 5% value, the median,
and the 95% value; all in milliseconds. For a full box plot see
[3]. As seen in the table the wireless link introduces a 5ms
oneway latency and the Raspberry Pi at the plant is many
times slower than the other systems. The AWS node is faster
than the edge node and ERDC which is to be expected. It
can also be seen that a significant proportion of the delay
in the system is introduced by the software platform and
not the network. In Fig. 3 we dynamically migrate the MPC
randomly across the four nodes. As shown in the figure the
process is stable and is able to operate satisfactory in spite
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Fig. 3. MPC randomly migrated between the four nodes, from [3]. The top plot shows the setpoint in the black and the ball postion. The lower plot shows
in which node the MPC executes.

of the migration and the resulting changes in latency and
execution time. However, by tweaking the problem so that the
optimization problem becomes more challenging it is possible
to have a situation where placing the MPC in the edge node
is the only viable approach. If it executes in the locally the
execution times becomes too large and if it executes in the
AWS the communication latency becomes too large. In both
cases the ball falls of the beam. The tweaking of the problem
was done by increasing the optimization horizon thus creating
a larger optimization problem and by changing the reference
signal to be closer to the constraints, i.e. closer to the end of
the beam.

V. TIMING ISSUES

In the previous example the same MPC formulation and
plant models were used independently of in which node it
executed. This MPC formulation ignores the fact that the
execution time is non-zero and time varying. However, sub-
stantially better results can be achieved if this is taken into
account in the design. There are several ways of doing this and
here are some examples. Dynamic variations in latency up to
one sampling period can be handled by adding a one sample
delay to the model. This can be achieved by using a Kalman
filter that at time tk estimates what the state x will be at time
tk+1. Rather than waiting with invoking the MPC until time
tk+1 the MPC is invoked immediately at time tk. The resulting
control signal that arrives at t so that tk < t < tk+1 will
then correspond to the control signal that should be applied at
time tk+1. By delaying the actuation of this until tk+1 latency
variations within one sample can be handled. This approach
can also be extended to longer delay variations. An approach
to handle the slower execution time at the local server could be
to increase the sampling period of the MPC, e.g., by a factor
2, when it executes locally and resample the process model
accordingly. The rationale behind this is that the sampling
period selection rules used in discrete-time control typically
provide a range of acceptable sampling periods rather than
a single value. Another situation that must be handled is the
case when the MPC is running in a cloud node and the control
signal is not available at the actuation unit when needed. A
possible approach for handling is this is to use the fact that
a MPC returns not only the control signal to apply at tk+1,
but also the control signal to apply at tk+2. Hence, this signal

could be applied to the plant instead, effectively running the
process in open loop for one additional sampling period. This
is just a few of the techniques that could be used. Several
more have been developed in the Networked Control System
(NCS) community, e.g., [7].

VI. CONCLUSIONS

Using the cloud for deployment of control systems has
many attractive advantages. It is possible to use additional
information such as high-fidelity models, additional non-local
sensor data, learn from the control of other similar plants, and
use the latest optimization and learning algorithm. Using this
model one could think of control as a service, i.e., Control-

As-A-Service (CaaS). However, the requirements on short
latency requires the use of local data centers at the edge of
the communication network. The migration of the controller
between different nodes creates new and challenging control
problems related to delay compensation, switching, and mode
changes. Model-Predictive Control is a control technique that
fits the cloud paradigm well.
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• External Physical Telemetries: We collect the sensed
physical data from a third party system with a sensor array
and verify the validity of the target control system state.

To make tampering and omitting of the execution time data
more difficult, we can anchor the execution time data manage-
ment in OS kernel as one of the scheduler functionalities. Even
if the OS kernel is compromised and the execution times plus
system state are tempered with to circumvent detection, simply
transmitting arbitrary system state values does not compromise
the entire detection mechanism. Detection is not only based
on the internal system states but also on their relation to
and consistency with external physical states. For example, an
intruder may record and replay the output and voltage current
of an inverter, yet false power data can still be detected if it
does not match the expected values given the current weather
data at this geographic location.

Based on the above data, the IDS conducts two analyses,
Timing Analysis and Third Party Model Verification. The
former analysis checks the execution time against valid upper
bounds obtained from prior experiments. If the error is larger
than a certain threshold or the data packets are not received
before their deadline, the system will report an anomaly. If the
former analysis does not detect any anomaly, the latter analysis
is conducted, which supplies the input physical telemetry
data to a third party ML model and compares the measured
physical telemetry with the expected outcome based on the
ML model. The inputs to the model are selected based on the
specific control application from internal and external physical
telemetries. If the error is larger than a certain threshold, the
system will report an anomaly. The pseudo code of intrusion
detection is shown in Algorithm 1 using the model parameters
of Table I.

The two analyses can be further fused to more effectively
counter stealthy attack. A stealthy attack may evade the detec-
tion if it results in moderately suspicious execution times and
moderately suspicious physical state telemetries. However, the
IDS could still detect this attack by considering the execution
times and telemetries together, and raising an alarm if both are
moderately suspicious. Such fused detection will be based on
weighting the thresholds of the timing analyses and the ML
verification output and obtaining the summed overall detection
threshold. How to weight and fuse the detection thresholds is
beyond the scope of this paper. Such fused detection handles
independent detection of one data sources as a special case,
where other sources receive “zero” weights.

IV. PROMPTNESS

Our system addresses one of the most important require-
ments of IDS, promptness, as follows. One of our objectives is
to guarantee prompt response to the intrusion through reducing
the detection delay, i.e., the duration between the intrusion
event and the detection of such intrusion. “Promptness” does
not only imply a tight average timing bound of detection delay
but also a tight upper timing bound, namely Tdetect. The total
detection delay is the aggregate of two terms:

TABLE I
PARAMETERS OF THE DETECTION ALGORITHM

Symbol Description
N number of code snippets in the target control code

Dcomm deadline of communication delay
W CET [N ] worst-case execution time vector

T HML ML model verification threshold
socket controller socket file descriptor
Data streaming data from controller
Tdtc the data reception timestamp on the detector
Ttgt the transmission timestamp on the controller

Tctrl[N ] execution time vector on target control system
P HYin internal physical telemetries
P HYex external physical telemetries
MSRin physical telemetries selected as measured inputs
MSRout physical telemetries selected as measured outputs
EXPout inference output of ML model

Algorithm 1 Intrusion Detection Algorithm

1: function DETECT ANOMALY( socket )
2: Data = read(socket);
3: Tdtc = gettimeofday();
4: if Data ≤ 0 then
5: return True; ◃ packet not received
6: else
7: [Ttgt, Tctrl[N ], P HYin, P HYex] = parse(Data);
8: if Tdtc − Ttgt > Dcomm then
9: return True; ◃ data packet not received in time

10: else if ∃i, Tctrl[i] > W CET [i], 0 ≤ i < N, i ∈ Z then
11: return True; ◃ execution time over bound
12: else
13: [MSRin, MSRout] =

select telemetry(P HYin, P HYex)
14: EXPout = ML Model(MSRin)
15: if ∥EXPout − MSRout∥ > T HML then
16: return True; ◃ ML verification failed
17: else
18: return False; ◃ No anomaly
19: end if
20: end if
21: end if
22: end function

• The duration between the start of the intrusion and the
time when the data packets are transmitted to and started to
be processed by the detection system, namely Tcomm.

• The duration between the start and the end of the analysis
of the packet data on the detection system, namely Tanaly.

Reducing the upper bound of the detection delay is not only
important to guarantee prompt detection of an anomaly but is
also essential to ensure fast data stream monitoring for the
target control system.

The transmission interval for streaming data packets can be
configured by the programmer to update the execution time
bounds and system state to detect an anomaly in a timely
manner. Ideally, such an interval is aligned to the control
system sampling interval to constantly monitor all system
timing bounds and physical states. In order to apply the ideal
data transmission interval, the detection delay should be less
than the ideal transmission interval. Since the communication
delay is determined by the operation system and network
medium, we have less margin to tune and optimize the
communication delay compared to the analysis delay. Hence,
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we use experiments to determine the communication delay and
then focus on tightening the upper bound of analysis delays
via code optimization. In future work, we plan to enhance the
network stack and operating system kernels to further optimize
on communication delay.

Communication Delay: Our system uses a communication
delay deadline, Dcomm, on the detection system to verify
the validity of the first part of the detection delay, which
is the aggregate of T target

proc (network processing delay on the
control system), Ttrans (network transmission delay between
control and detection systems), and T detect

proc (system and net-
work processing delay on the detection system. The network
processing delay on both the target and detection systems can
be bounded within 2ms [9]. Both systems are usually deployed
in the same local area network (LAN) connected via Ethernet
with a typical upper bound of delay < 1ms for 100Mb wired
Ethernet [2], which is better than any wireless delay [7].

We assume the system clocks are synchronized for the target
control and detection systems using Network Time Protocol
(NTP) or Precision Time Protocol (PTP) with a system clock
error Terror bound of 18ms and tens of nanoseconds, respec-
tively [4].

We ensure that the detector waits for and then timestamps
the arrival of packets from the controller instead of leaving
the arrived packet in the socket buffer and timestamping them
later. By not buffering packets, we tighten the upper bound on
the communication delay.

Assuming we use NTP and given the above timing
bounds, we obtain a theoretical communication delay deadline
Dcomm = max Tcomm + Terror = max(T target

proc + Ttrans +
T detect

proc ) + Terror = 2 + 1 + 2 + 18ms = 23ms.
Analysis Delay: The analysis delay is the worst-case exe-

cution time (WCET) of the detection task, which is checking
the validity of the execution time upper bound and the state
of the control system using the ML model. In our experiment,
we found that the WCET for the execution time checking
code is significantly smaller than the WCET of the ML model
checking code (see experimental section).

The WCET of the ML model checking code is dependent
on the ML library deployed on the detection system. Since
ML model verification is an inference task, we only consider
the WCET of the inference API of the ML library. We select
representative ML libraries to compare their suitability for a
more predictable upper bound on the execution time of their
inference APIs. We select Keras with a Tensorflow backend
as the representative for an interpreter-based ML library and
Caffe for a compilation-based library. In contrast to the Python
interpreter-based Keras library, the inference code of Caffe is
written in C++ and compiled into native code, which should
in principle result in tighter upper bounds of execution time.
Another significant advantage of Caffe over Keras is that it
utilizes less memory than Keras and does not dynamically
allocate/free any of it. Python’s background garbage collector
does not provide fine-grained real-time control and often
perturbs the predictability of execution time of the ML tasks
under Keras. The same is true for Python’s reliance on an

interpreter, which not only adds overhead for execution but
also reduces predictability. (Notice that Python’s libraries, such
as numpy, often make calls to lower-level C or Cuda libraries
for CPUs and GPUs, respectively, which results in better and
more predictable performance on higher-end platforms, but not
on embedded architectures such as the Raspberry Pi.)

Our experimental comparison shows that the average ex-
ecution time of Keras’s inference phase is about 4 times
slower than that of the original Caffe code basis. However,
the standard deviation of the execution time, which is directly
related to execution time predictability, varies significantly for
the original Caffe code distribution, i.e., it is occasionally
two orders of magnitude larger and otherwise 4 times smaller
than that of Keras. This somewhat surprising result shows that
Keras outperforms the original Caffe code in performance and
real-time predictability for the ML task of inferencing.

V. ACCURACY

The accuracy of our system is evaluated by the confusion
matrix, where the false negative (FN) rate indicates undetected
anomalies and the false positive (FP) rate indicates normal
state flagged as abnormal.

The overall system accuracy is affected by both the accuracy
of execution time upper bound checking and the accuracy of
ML model verification. We denote the FP rate and FN rate
for the timing analysis and ML model verification as FPtm,
FPML,FNtm and FNML respectively. The derivation can be
briefly described as follows. An FN detection of the overall
system occurs when and only when an attack takes place to
the controller but neither timing analysis nor ML verification
detect such an intrusion. Thus, an FN event implies both
timing analysis and ML verification failed, which is equivalent
to multiplying the probabilities of these two independent de-
tectors. In contrast, an FP occurs when there is no attack but
either timing analysis or ML verification flag an anomaly, i.e.,
the union of FP events of the two detection methods. Since an
anomaly flagged by timing analysis precedes ML verification,
the FP event of the ML verification coincides with a true
negative (TN ) of timing analysis. Since TN = 1 − FP ,
the overall system detection FN, FNsys, and false-positive,
FPsys, rates are: FNsys = FNtm ∗ FNML (1)

FPsys = FPtm + (1 − FPtm) ∗ FPML (2)

Here, we observe that FNsys is reduced by a factor of 0 <=
FNML <= 1. Although an extra term, (1−FPtm)∗FPML, is
added to the overall system FP rate, detection still depends on
FN and FP . In other words, a trade-off exits between the cost
of reacting to false alarms and missing anomalies, where the
latter exposes systems to greater risk. Such a study is beyond
the scope of this paper. Instead, we focus on configuring
the detection threshold of the timing analysis and the model
verification for better overall accuracy of the detection system
based on a pre-trained ML model.

VI. EXPERIMENT

We consider a practical industrial problem, where a green
(solar) power generation source is secured. The core part of
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Abstract—Technologies enabling connected and automated

vehicles are increasingly becoming the focus of research and

development in the automotive industry. Consequently vehicles

are equipped with different modes of connectivity, which enable

them to communicate with various entities such as the cloud

(V2C), infrastructure (V2I), other vehicles (V2V) and pedestrians

(V2P). However, recently vehicular edge computing has become

popular, whereby vehicles communicate with edge nodes, which

are physically located close to vehicles as it reduces the turn

around time compared to V2C. There are various types of data

and service that can be provided to the vehicles through the

edge nodes, such as content delivery, computation offloading,

etc. In this work, we propose a social welfare-based optimization

framework for data/service delivery to connected vehicles via

the edge nodes while considering the vehicle traffic flow in the

edge coverage area. Additionally, we present our initial results

on optimally delivering data/service to vehicles on the move,

while considering both delivery time and edge bandwidth cost

objectives.

I. INTRODUCTION

In the past few years, the automotive industry has focused
its research and development on technologies that enable
the realization of connected and automated vehicles. This
effort has seen lots of innovation in the development of
novel networking technologies and applications that enhance
driver safety and experience, such as intelligent driving, driver
behaviour analysis and predictive maintenance. Many of these
applications either receive some kind of data from the external
entities such as cloud or are computation intensive functions.
Therefore, storage and computation resources are very critical
to the efficient execution of these applications. Although it is
best to execute these applications on the vehicle platform to
minimize latency, it may be computationally infeasible due
to the limited capacity of the compute resources available
as many concurrently running applications result in resource
contention.

One solution to the computation problem has been to offload
the execution of an application partially or entirely to the
cloud server due to its massive computational capacity. The
results of the computation are then sent back to the vehicle.
However, this approach results in excessive turnaround time
due to communication latency. Additionally, with more ve-
hicles offloading their computation, there will be contention
for communication bandwidth. The above two problems are
addressed by the paradigm of mobile edge computing (MEC).
In MEC, there are edge nodes, which sit in between the

cloud and the vehicles and are physically located closer to
the vehicles. Any data (such as update data) that is sent from
the cloud to a group of vehicles can be sent via the edge
nodes, which will result in reduction of bandwidth usage as
the same data need not be sent multiple times to different
vehicles. The vehicles can then retrieve their data as they pass
through the coverage area of the edge. Similarly, computation
can be offloaded from the vehicle to the edge instead of the
cloud, which considerably reduces the turnaround time.

In the context of edge computing-based data/service de-
livery to the vehicles, one important question that needs to
be answered is how to allocate resources on the edge nodes.
The storage, computational and bandwidth capacities of the
edge nodes are constrained in comparison to the resource
capacities on the cloud. Therefore, it is essential to allocate
the edge resources such that the target objective functions are
optimized. In this work, we propose a social welfare-based
optimization framework to deliver data/services to vehicles on
the move while considering the objectives of delivery time and
edge bandwidth cost.

In Section II, we present the motivation of our work.
Then, we discuss the proposed optimization framework in
Section III. The initial experimental results are presented in
Section IV. In Section V, we highlight our conclusions.

II. MOTIVATION

Recently, the US Department of Transportation has funded
three connected vehicle pilot projects in New York, Wyoming
and Tampa [2], where the goal is to evaluate the effectiveness
of using an infrastructure consisting of road side units (RSUs)
(as edge devices) in improving the driver safety. The pilot
projects in New York and Tampa operate in an urban envi-
ronment whereby the vehicles communicate with the RSUs,
other vehicles and traffic lights to improve safety of drivers,
pedestrians and to improve the traffic flow through intersec-
tions. On the other hand, the pilot project in Wyoming operates
in an Interstate route and helps the drivers in situations of
bad weather to give alerts and provide safety from crashes.
In this work, we leverage this RSU based edge infrastructure
to deliver important data/services which improve the driver
safety and experience. Hence, we propose an optimization
framework to allocate resources on the edge nodes (or RSUs in
the case of the pilot projects) such that data/service delivery is
accomplished while optimizing some target system objective.
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The question of optimal resource allocation on edges in the
context of connected vehicles on the move is dependent on
the following factors - edge resource capacity, vehicle route,
traffic flow density, edge coverage area and the target system
objective (delivery time, bandwidth cost, etc.). The higher the
resource capacities on edges, more the vehicles that can be
served. The vehicle route imposes a constraint on which edges
can be used to deliver data/service. If the traffic flow density
is too high in the coverage area of an edge, then it may not be
feasible to deliver any data/service to a vehicle via that edge.
Therefore, in this work, we attempt to capture the effects of
traffic flow density on the optimization objectives. Intuitively,
the larger the edge coverage area, more is the time each vehicle
has to retrieve its data/service from the edge. We consider all
these factors in formulating our optimization problem in the
Section III.

The research that is closest to our work are the papers on
data delivery from infrastructure to vehicles [6] and online
resource allocation to deliver services like computation of-
floading [8] for mobile nodes. In [6], the authors propose
a trajectory-based forwarding scheme to deliver data from
infrastructure nodes to moving vehicles in vehicular adhoc
networks. An online edge cloud resource allocation algorithm
is proposed in [8], which considers arbitrary user movement
and variation in resource prices. Due to arbitrary user move-
ment, the cloud does not a priori know the route that the
vehicle will take. In contrast, it is a very likely scenario that a
driver knows beforehand the route to the destination. In such
circumstances, the cloud can exploit the route information to
deploy data/service, which has been used in [6]. However,
both these techniques do not consider any vehicle flow model,
which characterizes the movement of traffic near the edge or
between edges.

Our prior work [3] on data/service delivery proposed an
optimization framework to address the issues of other works
mentioned above. The proposed optimization framework in [3]
considers the vehicle traffic flow density while allocating
resources on the edge for data/service delivery. However, the
optimization was performed only considering a bandwidth cost
objective. Delivery time of the data/service is also an impor-
tant system objective. Therefore, in this work, our proposed
optimization framework addresses this problem by introducing
a social welfare function that considers the target requirements
of delivery time and bandwidth cost. We optimize the social
welfare objective for a group of vehicles entering the system
and present some initial results showing the advantages of
using the social welfare function.

III. OPTIMIZATION FRAMEWORK

The optimization flow starts in the cloud when it receives a
bunch of requests from the vehicles in order to either deliver
some data or service. Along with the request, the vehicles
also send information regarding the route that they intend to
take. From the route map, the cloud can infer the edges that
the vehicle will pass through. Let us assume that there are N
vehicles requesting for either data or service and there are M

edges in the network available for data/service delivery. The
goal of the optimization step in the cloud is to find appropriate
edges in the edge network such that a system objective (for
e.g., total bandwidth cost, delivery time, etc.) for delivery of
data/service from the edges to the vehicles is optimized.

First, we will describe the terms used in our optimization
framework and then we will present a discussion on the
constraints and optimization objective. For the data delivery
problem, the decision variable is mi,j , which is the size of
data chunk for vehicle Vi (it is either a part of Vi’s entire
data or the entire data) that is assigned to edge Ej . We use
a term xi,j to indicate that vehicle Vi passes through edge
Ej . The memory capacity and memory currently occupied on
edge Ej is denoted by Mj and Mocc

j respectively. The memory
requirement for the data required by vehicle Vi is given by Mi.

A. Optimization Constraints

We will describe the five constraints that are necessary to
check for feasible data delivery to the vehicles. The constraints
for the service delivery also follow the same idea, which we
will discuss briefly but do not present in detail.

1) Range Constraint: The upper and lower bound for the
decision variable mi,j is given as follows.

mi,j = 0, i = 1..N, j = 1..M : xi,j = 0

mi,j � 0, i = 1..N, j = 1..M : xi,j = 1

mi,j  Mi, i = 1..N, j = 1..M : xi,j = 1

(1)

The upper bound for mi,j is the size of the data that the
vehicle requests for, while the lower bound is 0.

2) Accumulation Constraint: Given that data may be
broken into chunks and stored on more than one edge,
the summation of the sizes of the data chunks over all
the edges should not exceed the data size Mi. This
constraint is formulated as shown below.

MX

j=1

mi,j ⇥ xi,j = Mi, i = 1..N (2)

3) Time to Edge Constraint: This timing constraint en-
sures that a vehicle reaches an edge not before the data
chunk has been transferred by the cloud to the edge. We
formulate this constraint as follows.

mi,j⇥t commi,j  mi,j⇥t trvi,j , i = 1..N, j = 1..M
(3)

where t commi,j is the time taken to send a data chunk
mi,j to edge Ej and t trvi,j is the time taken for the
vehicle Vi to travel to edge Ej after the vehicle Vi

initiates the download. We use the decision variable mi,j

on both sides of the inequality in order to not map any
data chunk to the edges where the timing relationship
t commi,j  t trvi,j is not satisfied.

4) Edge Resource Constraint: For data delivery, we con-
sider the memory constraint, where we ensure that the
amount of memory required for all the chunks belonging
to all the vehicles passing through an edge does not
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exceed the memory capacity of the edge. This constraint
is formulated as below.

NX

i=1

mi,j +Mocc
j  Mj , j = 1..M (4)

5) Bandwidth Schedulability Constraint: Given the band-
width Bj offered by the edge Ej , the amount of data
available to a vehicle Vi can be computed based on a
macroscopic vehicle flow model in the coverage area
of an edge, which is described in [7]. The macroscopic
flow model depends on three quantities - vehicle density
kj , vehicle flow qj and vehicle velocity vi,j . The three
quantities in the flow model are related as follows

qj = kj ⇥ vi,j

Greenshields [5] proposed a linear relationship between
speed and density based on field experiments given by

vi,j = vfj ⇥ (1� kj

kjamj

)

where vfj is the free flow velocity near edge Ej , which is
the velocity of the vehicle when it has no obstructions
from other vehicles (usually assumed to be the speed
limit) and kjamj is the vehicle density during a jam. The
vehicular traffic in the coverage area of the edge can be
modelled using a M/D/C/C queuing model for a steady-
state traffic flow model described above as shown in [7],
whereby the traffic arrival at the edge follows a Poisson
process, servicing the traffic is deterministic and there
are C servers. If the coverage distance of an edge is Lj ,
then C = kjamj ⇥Lj is the maximum number of vehicles
that can be accommodated in the coverage range of the
edge. Then the minimum number of bytes received by
a vehicle is given by

Dmin
i,j =

Bj

kjamj ⇥ vi,j
(5)

where Bj is the bandwidth of the edge device.

The bandwidth schedulability constraint for vehicle re-
quiring data is given by

mi,j  Dmin
i,j , i = 1..N, j = 1..M (6)

which simply depicts that the data chunk mapped to
edge Ej for vehicle Vi must be less than or equal to the
minimum number of bytes that Vi will receive from Ej

during its journey across the coverage distance. Addi-
tionally, if Breq is the minimum bandwidth required by
other vehicles near edge Ej , then the bandwidth schedu-
lability constraint for other vehicles in the coverage area
is given by

Breq  Bj

Lj ⇥ kjamj

, j = 1..M (7)

which means that the minimum bandwidth available for
a vehicle (given by the right hand side term) should be
no less than Breq .

In the case of service delivery, there are additional ac-
cumulation constraints considering the processing require-
ment following the same idea as for memory requirement.
Similarly, the edge resource constraints also look at both
memory constraints and processing capacity constraints. Here
the difference is that there is some data sent by the vehicle
to the edge and the result data is sent back to the vehicle. In
the case of bandwidth schedulability constraint, we need to
consider the bandwidth for data transfer from vehicle to edge
and back to the vehicle.

B. Objective Function
In this section, we introduce the social welfare objective

function that considers both data delivery time and bandwidth
cost. In order to capture delivery time, we use the concept
of utility function U(.), which ensures that the utility value
decreases as the vehicle goes further away from the point of
origin where it initiated the data download request. The utility
function increases in value with increase in the value of chunk
size and saturates after a certain value of chunk size equal to
the size of the data because the driver satisfaction beyond
that saturates. Thus, utility function Ui,j(.) for vehicle Vi on
edge Ej is strictly concave and we use a modified version of
log(.) function used in earlier works on network bandwidth
allocation as shown in [4].

The bandwidth cost function is captured using a congestion
function. The congestion function uses a bandwidth pricing
mechanism, which increases the cost of using the bandwidth
at an edge if the bandwidth utilization of the edge is already
high. When the bandwidth utilization is low, the cost of using
the bandwidth is lesser. Traditionally, in network bandwidth
allocation, a quadratic function of bandwidth utilization has
been used to determine the congestion cost as given below

Cj(bw
util
j ) = � ⇥ (1 + bwutil

j )2 (8)

where � is the cost factor and bwutil
j is calculated based on

the bandwidth allocated to the vehicles with chunk mi,j to
be downloaded and the vehicles with minimum bandwidth
requirement of Breq .

The social welfare function can then be calculated as

S(Bi,j) =
NX

i=1

MX

j=1

Ui,j(Bi,j)�
MX

j=1

Cj(bw
util
j ) (9)

C. Optimization Frequency and Resource Usage Duration
We plan to extend the framework to also consider the

temporal aspect pertaining to more than one optimization,
i.e., our current optimization framework only looks at the
constraints relevant for one optimization and therefore, we
will analyze the effects of time interval between two con-
secutive optimizations on the data/service delivery optimality.
Similarly, in the current work, we do not include constraints
that reflect the release of memory once the data/service is
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delivered, which is essential for efficient resource allocation
for data/service delivery. We plan to include this by releasing
the memory after the latest time when the vehicle will pass
by the edge.

IV. PRELIMINARY RESULTS

In this section, we demonstrate the advantage of using
the social welfare function in comparison to an objective
function which only considers the bandwidth/congestion cost.
We will first explain the experimental settings and then present
our inferences from the results obtained. The data for the
experiments were generated using Matlab scripting and the
optimization was carried out using the CVX Solver.

The ranges of the parameters used in this experiment are
taken from sources such as [7], [1], [8], [2] and [4].

1) Number of edges (M ) was fixed to 49.
2) Number of vehicles (N ) requiring data was fixed to 120.
3) Vehicle jam density (kjamj ) was randomly generated

using uniform distribution between 40 and 50.
4) The actual vehicle density (kj) in the coverage area was

fixed to 35.
5) Coverage distance (Lj) of each edge was assigned

arbitrary values between 0.6 miles and 1.6 miles.
6) Memory requirement of data requested by each vehicle

(Mi) was randomly generated using uniform distribution
between 60 Mbits and 80 Mbits. These values are very
much in the range of realistic software update sizes as
given in [1].

7) Memory capacity of the edge (Mj) was randomly gener-
ated using uniform distribution between 400 Mbits and
500 Mbits.

8) Maximum bandwidth capacity of the edges (Bj) was
randomly generated using uniform distribution between
8 Mbps and 15 Mbps.

9) Free flowing velocity (vfj ) of the vehicles in the coverage
area of edges was randomly generated between 50 and
70 mph.

10) The route of the vehicles was randomly generated by
picking connected edges randomly from a square grid.

11) The earliest travel times of the vehicles to the edges
on its route was generated based on the distance of
the edges from each other and free flowing velocity of
the vehicles between the edges, both being generated
randomly.

12) The bandwidth cost factor � is fixed to 0.36.
The optimization result is shown in Fig. 1, where the

delivery times of data is compared between social welfare
based optimization (red ”plus” plots) with that of bandwidth
cost based optimization (green ”circle” plots). It is very evident
that many vehicles receive their data much earlier using the
social welfare objective function. However, there are some
vehicles which receive their data later using social welfare
objective function. On an average considering 120 vehicles, the
optimization using social welfare objective function resulted in
earlier data delivery by 91.08 secs. The increase in bandwidth
cost was marginal by 0.3742, i.e., the bandwidth cost using

Fig. 1: Comparison of Data Delivery Times between Social
Welfare Objective and Bandwidth Cost Objective
social welfare function increased by 0.3742 in comparison to
the bandwidth cost function. Therefore, our initial results show
that we can perform faster delivery of data to vehicles using
a social welfare function that we proposed in this work.

V. CONCLUSION

In this paper, we present a social welfare-based optimization
framework for data/service delivery to connected vehicles via
edge devices. We proposed a social welfare function, which
takes into consideration the delivery time and bandwidth cost
parameters. The optimization results demonstrate that it is
possible to deliver data faster to the vehicles via the edges by
using the social welfare function. As part of the future work,
we plan to conduct more experiments by varying the values
of different parameters including the problem size. The social
welfare-based optimization is complex and therefore we also
intend to work on a heuristic solution for data/service delivery.
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for arbitrary user mobility in distributed edge clouds. In 37th IEEE
International Conference on Distributed Computing Systems (ICDCS),
pages 1281–1290, 2017.

90



RRP Edge Computing System
Guangli Dai Pavan Kumar Paluri Albert M. K. Cheng

Department of Computer Science, University of Houston, Houston, TX 77004, USA
email: {gdai, pvpaluri, amcheng}@uh.edu

Abstract—Due to the popularity of the Internet of Things, more
and more computing resources are needed for smart devices.
To relieve the dependency on clouds and to lower the cost of
equipment, we propose a Regularity-based Resource Partition
Edge Computing System (RRP-ECS). In this system, RRP divides
each CPU into 2 partitions, one of which handles the basic
control, while the other functions as a core of a virtual machine
dealing with intensive tasks. We introduce a centralized structure
and discuss the critical task mapping problem in RRP-ECS in
detail.

I. INTRODUCTION

As a part of the Internet of Things (IoT), more and more
smart devices are deployed in homes and cities these days.
However, smart devices require a large amount of computing
resources. Dedicated localized computing resources are expen-
sive while dependency on cloud computing leads to inevitable
latency. This paper proposes an edge computing system based
on the Regularity-based Resource Partition (RRP) model [1].

Considering that smart devices do not have heavy-loaded
tasks at all times, equipping a high performance CPU for
each smart device would be expensive and wasteful. Therefore,
equipping a relatively low-configuration CPU for each smart
device and sharing computing resources with each other would
be less expensive and more efficient. RRP Edge Computing
System (RRP-ECS) is a virtual machine built on multiple
smart devices as shown in Fig. 1.

For smart devices, tasks can be divided into two classes:
1) basic control tasks, which are fundamental and low-cost,
and 2) high-level intensive tasks, e.g., analyzing the data col-
lected from sensors. Similarly, in RRP-ECS, each computing
resource, i.e., CPU, is divided into two partitions by the RRP
model as shown in the dotted squares in Fig. 1. Then, we can
assign the basic control tasks of the device, e.g., monitoring
temperatures, to the reserved partition. For instance, in Fig. 1,
Partitions 1, 3 up to n�1 are reserved partitions that work on
basic control tasks independently. We refer to other partitions
as redundant partitions as they are not necessary for basic
controls. Hence, we can utilize the redundant partitions across
different devices, just like Partitions 2, 4 up to n in Fig. 1,
to build a virtual machine (VM). Each partition has a VCPU
pinned on it while Host OS runs the Application Level on these
VCPUs. High-level tasks of smart devices are uploaded to VM
where they are accordingly allocated to partitions. Besides,
with a host OS installed in VM, the VM can also be connected

†This paper was supported in part by the US National Science Foundation
under Award No. 1219082.

through a personal computer and handle tasks uploaded by
users.

There are several advantages of adopting RRP-ECS.
1) Efficiency: With an efficient algorithm dividing resources

into partitions [1] at the resource level, redundant comput-
ing resources in smart devices can be utilized efficiently
to assist other smart devices instead of being idle.

2) Security: RRP guarantees that reserved partitions can
work independently without interrupts from other parti-
tions albeit they are located on the same physical core
and thus the security of basic control tasks is guaranteed.

3) Portability: Different smart objects always have het-
erogeneity in either hardware or software. With the
centralized structure introduced later, the addition and
removal of CPUs in RRP-ECS are less costly. Similarly,
other resources, e.g., hard disk, can easily be included or
removed with a centralized manager.

4) Transparency: With all tasks managed by the VM, if the
local computing resource is not enough, VM can directly
get connected to the cloud. Thus the cloud connection
and resource usage are transparent to Applications.

The remainder of this paper discusses: 1) The structure of
RRP-ECS. 2) The resource interface provided by the RRP
model. 3) Potential strategies that map tasks to partitions and
their performances.

II. THE STRUCTURE OF RRP-ECS
As shown in Fig. 1, Virtual machine consists of different

partitions in the resource level. Then a host OS is run on the
resource level where applications are deployed. In this section,
we show how these are done based on the centralized structure
of RRP-ECS. Reserved partitions work independently and are
not included in the VM and there is only one VM which
employs the centralized structure as shown in Fig. 2.

In the centralized structure, the Task Manager (TM) is
responsible for allocating tasks to partitions and is similar to
the Domain 0 of Xen [2] in implementation. TM may reside
in an independent CPU for safety. However, it can also be a
partition relying on its degree of load, which will be discussed
in the future. The function of TM includes: managing the tasks
coming from other partitions, maintaining device drivers and
communicating hardware information to partitions. TM starts
first during the booting of the system and then starts managing
redundant partitions. In a nutshell, TM acts as a nerve center
for the VM. Due to limitations of space, we mainly focus on
the task processing, which is the main function of TM.
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Fig. 2: Centralized Task-Partition Architecture.

Tasks from different Applications are all managed by TM.
To be specific, there are two sources of tasks. 1) Smart devices:
High-level intensive tasks from smart devices are uploaded
to TM. 2) Host OS: The host OS installed in the VM can
be reached through Secure Shell (SSH) like cloud. Tasks
uploaded through the connection are also uploaded to TM.

TM processes the tasks with the following operations, which
is also shown in Fig. 2.

1) upload(): Tasks from different sources are uploaded to
TM through upload().

2) map(): After being uploaded, tasks are put into a global
queue, where the LLF (least laxity first) policy [3] is
adopted. Tasks popped out from the queue will be mapped
to a suitable partition for execution if there exists one.

3) dispatch(): If a task is successfully mapped to a partition,
it will be transmitted to the partition through event
channels and executed there. Event channels are built
based on TCP/IP [2].

4) upload cloud(): If no partitions can accomplish the task
on time, it will be uploaded to the cloud and taken good
care of there [4].

The advantages of adopting a centralized structure in RRP-
ECS are as follows. 1) With a centralized TM, which acts
like Domain 0 in Xen, merely installing a drive on CPUs
in smart devices can include them in RRP-ECS. This makes
the removal and addition of devices easier. 2) A central-
ized structure makes the connection to the resource level,
i.e., clouds and partitions, transparent to Applications. 3) A
centralized structure reduces the communications between
partitions, which may lead the system to potential intrusions
or vulnerability.

With a centralized TM, the biggest challenge for RRP-ECS
is developing policy mapping tasks to partitions. Without a
proper policy, tasks may be assigned to a partition where
it cannot be completed on time. Therefore, a schedulability
test on each partition and a proper mapping policy are much
required. To better understand this, we introduce the resource
interface provided by RRP.

III. RESOURCE INTERFACE PROVIDED BY THE RRP
MODEL

We first formally define a time slice.

Definition 1: Time slice is the basic unit of time containing
fixed number of cycles that cannot be further partitioned in
any given resource partition.

Based on time slices, RRP divides computing resources into
partitions efficiently based on availability factors and supply

regularities. Availability factor ↵(A) shows how many time
slices a certain partition A takes from the CPU during the
hyper-period. Supply regularity k(A) shows how close A is
to an average distribution [1]. In this paper, we are only going
to discuss regular partition whose supply regularity is 1.

Regular partitions are punctual as shown in Theorem 1.
Theorem 1: A regular partition A will have exactly one time

slice every 1
↵(A) time slices.

The proof of Theorem 1 is given in the technical report [5].
The resource interface of a regular partition is simply the

availability factor ↵. Thanks to the definition of time slice,
the availability factor can be applied to evaluate the computing
ability of partitions located on uniform processors.

IV. TASK MAPPING PROBLEM

Since [6] already proves that scheduling a task set on a
partition is the same as scheduling a task set on a CPU, we
will not discuss the scheduling of tasks on a single partition
here. With the structure in Section II and the resource interface
provided by the RRP illustrated in Section III, the main
challenge of RRP-ECS is to make sure the mapping policy in
map() neither makes partitions overloaded nor waste enormous
resources. For that, we first introduce a schedulability test to
judge whether a task is schedulable on a partition.

A. Schedulability test for task mapping problem in RRP-ECS
We first define the task set: T = {T1, T2, ..., Tn}. Each task

Ti is defined by Ti = (ci, di, pi, Ri, Di, Vi). ci, di and pi

respectively refer to the Worst Case Execution Time (WCET),
the relative deadline and the period of the task. Vi is the value
of Ti, which is the reward for accomplishing Ti on time. Ri

is the arrival time of the task. No information of Ti can be
accessed before Ri.

Similarly, Di is the departure time of task Ti. A periodic
task Ti does not leave the system, i.e., Di = +1. Sporadic
tasks, on the other hand, are split by TM into multiple single-
instance sporadic tasks. Hence, a single-instance sporadic task
Tk has a departure time Dk = Rk + min(dk, pk) since it is
supposed to leave once its execution is done.
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The regular partition set is P = {P1,P2, ...,Pm}. Each
partition Pj is defined by the resource interface Pj = (↵j)
where ↵j is the availability factor of Pj .

We give the schedulability test for tasks on a regular
partition.

Theorem 2: A task set T is schedulable on a regular partition
Pj if

|T |X

i=1

ci

min{di, pi}
 ↵j (1)

The proof of Theorem 2 is included in the technical report [5].
It is worth mentioning that, for implicit task sets, Equation 1
is the necessary and sufficient condition.

With Theorem 2, we can further define the notation of
density.

Definition 2: The density of a task Ti is

DENi =
ci

min{di, pi}
(2)

B. Model Formulation
Now we formulate the mapping problem. We first consider

the model consists of only periodic tasks involved. The con-
straints are as discussed below.

• Schedulability constraint: The sum of the densities of
tasks allocated to a certain partition Pi should not exceed
↵i to keep tasks real-time according to Theorem 2.

• Fair constraint: A task will be abandoned only when no
partition can accommodate it because RRP-ECS is not
allowed to abandon tasks freely.

• Online constraint: No information regarding task Ti can
be known before its arrival time Ri.

• Non-migration constraint: Once a task is assigned to a
partition, it cannot be migrated to another partition or
removed from the system until its departure time.

With the above constraints, the ultimate goal is to maximize
the expression:

max
nX

i=1

xiVi (3)

In equation 3, xi is a binary variable showing whether Ti is
accomplished on time. If Ti is accomplished on time, xi = 1,
else xi = 0. When xi = 0, Ti will be uploaded to the cloud
and executed there because the resource in RRP-ECS cannot
fulfill its request on time.

We name this model Regular-partitions Periodic tasks Map-
ping (RPM). Similarly, we can formulate Regular-partitions
Composite tasks Mapping (RCM) consists of both periodic
and sporadic tasks.

For RCM, all constraints and the goal above remain the
same while a new constraint is added.

• Leaving constraint: No resources will be reserved for
task Ti after Di.

The goal of RCM is also to maximize the values gained as
shown in Equation 3.

For both RPM and RCM, we mainly consider two sorts of
value of tasks. 1) Unit case: All tasks are equally important,
i.e., Vi = 1, 8i 2 [1, n]. 2) General case: The value of each task
is decided by the user arbitrarily. Here we do not discuss the
proportional case where Vi = DENi due to space limitations,
but it is discussed in the technical report [5].

C. Compare and contrast

Though RRP has been extensively studied since its proposal
[1, 6], mapping tasks to partitions has never been discussed be-
cause this is the first time RRP is used to integrate distributed
resources into one VM.

Despite that RPM and RCM resemble task mapping on
uniform processors and Multiple Knapsack Problem (MKP),
some characteristics distinguish RPM and RCM from models
in former works. 1) Both RPM and RCM are online mod-
els, while many decent works are done in offline scenarios
[7, 8]. The lack of preliminary information and long response
time requirements prevent offline algorithms from solving the
online version. 2) Both densities of tasks and the availability
factors of partitions do not have basic unit size, thus breaking
the assumption that the capacity of bins and size of items
are integers [9]. 3) Unlike in removable cases [10], the fair
constraint does not allow the system to abandon tasks freely.

Therefore, RPM and RCM are different from former mod-
els. The solutions applied to solve them, however, decides the
efficiency of RRP-ECS. Next, we give our observations.

D. Algorithm Best-Fit

Our answer towards RPM and RCM is quite simple: Best
Fit (BF). In BF, we use a set of parameter {�j} to record
the capacity of corresponding partitions {Pj}. Initially, we
set �j = ↵j . For task Ti, BF chooses partition Pk satisfying
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Fig. 3: Performance of various algorithms with variable ratios (�) between total utilization of tasks and total availability factors
of partitions in RPM.
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Fig. 4: Performance of various algorithms with variable ratios (�) between total utilization of tasks and total availability factors
of partitions in RCM and the influence of Periodic Ratio in RCM.

Equation 4. The key idea of BF is to reserve partitions with
large capacities for the future.

k = min
j:�j�DENi

�j (4)

Though maximization problem in RPM and RCM are both
NP-hard problem in strong sense as variants of MKP [8], we
prove a constant competitive ratio for BF on accommodating
inputs [11].

Theorem 3: Let ! be an accommodating sequence [11].
BF (!), the result of BF on ! and OPT (!), the result of
the offline optimal algorithm on ! satisfies: BF (!)

OPT (!) �
1
2

The proof is illustrated in the technical report [5].
Intuitively speaking, BF performs well because it always

reserves the resource for the unknown future. It may not be a
good strategy in offline scenarios [8], but BF performs really
well by being prudent in online scenarios. Next we validate
the performance of BF through simulations 1.

To make the simulation more realistic, we only pass in the
sum of the availability factors of partitions and the sum of
densities of tasks. The number of partitions and tasks as well
as the specific parameters of each partition and task are all
randomly generated. Each simulation is repeated 1, 000, 000
times and the results shown are the average value of results.
Best Fit is compared with Worst Fit (WF) and First Fit (FF),
which are prominent online algorithms discussed before [12].

We measure the result by Schedulability, which reveals the
percentage of the task sets that are schedulable and Values
Gained Ratio, which is the ratio between values gained by
the system and the total values of all tasks.

According to Fig. 3 and 4, the performance of BF always
overwhelms FF and WF with obvious gaps in all measure-
ments and few tasks fail when BF is applied even for heavy-
loaded task sets. Under different Periodic Ratio, which is the
ratio between the number of periodic tasks and that of all tasks,
BF still performs better throughout as shown in Fig. 4d. The
gap between BF and other algorithms increase as the Periodic
Ratio increases since a higher periodic ratio implies a heavier
load. This heavy load can be attributed to the fact that periodic
tasks never leave the system. More simulations are presented
in the technical report [5]. In short, all simulations indicate

1Simulation codes: https://github.com/DDeChoU/TaskMappingSimulation

that BF performs well even when the resource is limited and
it can guarantee the efficiency of RRP-ECS in most cases.

V. CONCLUSION

This paper proposes an edge computing system RRP-ECS
and discusses the centralized structure. Based on the resource
interface provided by RRP, we further discuss the task map-
ping problem and provide a brief and an efficient response
with Best Fit which is further validated by simulations.

However, we still have several potential to-do tasks which
can be pursued in the future regarding RRP-ECS.

• With no theoretical obstacles, the next step is to imple-
ment RRP-ECS on Xen.

• The feasibility of using caches (levels L1, 2 & 3) to
accelerate the scheduling and provide real-time guarantee
in TM needs to be investigated.

• The simulation codes used in this paper provide an envi-
ronment for the development of Reinforcement Learning
(RL) algorithms in RPM and RCM based on Keras [13].
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