#### RIM: Robust Intersection Management for Connected Autonomous Vehicles

**Mohammad Khayatian**, Mohammadreza Mehrabian, Aviral Shrivastava Arizona State University





## Why Automated intersections?

- Accidents at intersection
  - Around 30% of fatal crashes have happened in intersection areas, most of which, involved human errors. [FHA]



- On the average, each person in the US spends around 42 hours per year stuck in the traffic [FHA]
- As cars become autonomous, so too can intersections
  - Intersection Management using V2I







#### Intersection Manager (IM)

▶ An Infrastructure communicating with incoming vehicles.

- Multiple computing systems
- Real-time communication
- Real-time actuation

Robustness is very important!









## Safety buffer

- Localization of autonomous vehicle is challenging!
- IM should consider a safety buffer around each vehicle to account for uncertainties in vehicles position.



# **Existing Approaches**

- Query-based Intersection Management (QB-IM)
  - Vehicles send estimated time of arrival and velocity of arrival to IM
  - IM accepts/rejects the request
  - AIM (Autonomous Intersection Management) [1]
- Velocity Assignment Intersection Management (VA-IM)
  - Vehicles send their position and velocity
  - A target velocity is assigned to the vehicle
  - Cooperative Vehicle Intersection Control (CVIC) [2]

[1] Dresner, Kurt, and Peter Stone. "A multiagent approach to autonomous intersection management." Journal of artificial intelligence research 31 (2008): 591-656.

[2] Lee, Joyoung, and Byungkyu Park. "Development and evaluation of a cooperative vehicle intersection control algorithm under the connected vehicles environment." *IEEE Transactions on Intelligent Transportation Systems* 13.1 (2012): 81-90.



#### **QB-IM** (Query-based Intersection Management)



[1] Dresner, Kurt, and Peter Stone. "A multiagent approach to autonomous intersection management." Journal of artificial intelligence research 31 (2008): 591-656.

#### VA-IM (Velocity Assignment Intersection Management)



## **Timing Problem in VA-IM**

- Round Trip Delay (RTD) is ignored.
  - Inconsistency between vehicle position and what IM thinks





# **Ignoring RTD Will Cause Crashes**



## **Crossroads Technique**

▶ IM sets the execution location to be a fixed value as:

 $ActuationPosition = Request\ Position\ + (V_{max} \times WCRTD) + b$ 



[1] Andert, Edward, Mohammad Khayatian, and Aviral Shrivastava. "Crossroads: Time-Sensitive Autonomous Intersection Management Technique." *Proceedings of the 54th Annual Design Automation Conference 2017.* ACM, 2017.

#### **Issues of Crossroads**

- Safety-related
  - 1) Vehicles are assumed to have zero actuation time
  - 2) Assigned velocity will be maintained until entering the intersection
  - What if a disturbance is applied to the vehicle?
    - Wind, bump, etc.
- Performance
- Vehicles that intend to make a turn will slow down others.



#### **RIM Overview** Intersection Manager Request Response Sync Request | TOA & VOA Track the trajectory Find the Velocity optimal VOA trajectory $V_0$ time Phase 3 □ Phase 1 TOA

#### Our Approach: RIM

#### **Vehicle**

- 1) Clock Sync 📥
- 3) Send a request to IM

- 8) Find an optimal trajectory
- 9) Inform IM
- 9) Track the trajectory

#### IM

2) Clock Sync

- 4) Checks for conflicts
  - 5) Check the feasibility
  - 6) Send TOA and VOA

11) Store it.

```
Algorithm 1: Vehicle Controller

if Sync line is crossed then
```

```
result = synchronize();
      if result is not OK then
         if distance to transmit line is less than d_{min} then
             update(Trajectory, SD); /* slow down */
         end
         Goto Line 3:
      end
10 if Transmit line is crossed then
      V-Info = [P, V, a, TS, LO, a_{max}, a_{min}, ID];
      send(V-Info);
      Wait for the response:
      if response is timed out then
         if distance to intersection is less than d_{min} then
             update(Trajectory, SD); /* slow down */
         end
         Goto line 12:
         [TOA, VOA] = getPacket(response);
         [A_0, B_0] = \text{calculateTrajectory(TOA, VOA)};
         update(Trajectory, [A_0, B_0]); /* set the Ref
          Trajectory */
      end
24 end
```

#### Algorithm 2: IM's Scheduling algorithm



#### **Find the Optimal Trajectory**

We define a functional based on acceleration:

$$J = \int_{t_0}^{t_f} a^2 dt$$

Solve using Fundamental Lemma of the Calculus Variation:

$$a(t) = A_0 t + B_0$$

Linear acceleration is optimal!



## Find the Optimal Trajectory (cont.)

Taking integral from acceleration we have:

$$v(t) = \frac{1}{2}A_0t^2 + B_0t + v_0$$

Taking integral from velocity we have:

$$x(t) = \frac{1}{6} A_0 t^3 + \frac{1}{2} B_0 t^2 + v_0 t + x_0$$

Substituting the initial and final conditions  $(x(t_0) = x_0, x(t_f) = x_f, v(0) = v_0, v(t_f) = v_f$ , we have:

$$v(t_f) = \frac{1}{2} A_0 t_f^2 + B_0 t_f + v_0$$

$$x(t_f) = \frac{1}{6} A_0 t_f^3 + \frac{1}{2} B_0 t_f^2 + v_0 t_f + x_0$$

$$A_0 = \frac{6(2x_0 - 2x_f + t_f v_0 + t_f v_f)}{t_f^3}$$

$$B_0 = \frac{-2(3x_0 - 3x_f + 2t_f v_0 + t_f v_f)}{t_f^2}$$



#### Dealing with the Round-trip Delay

- As soon as TOA and VOA are received, the optimal trajectory is determined.
- All determined trajectories will meet the TOA and VOA requirement.
- Vehicles will control the position instead of velocity



# Feasibility of VOA and TOA

Is the assigned TOA and VOA feasible?

- Check for min and max acceleration rates
  - Vehicles have limited acc/dec power
- Check for min and max velocities
  - Road speed limit





# Feasibility of VOA and TOA







#### **Our Testbed**

- 4-way intersection
- 1/10 scale RC cars on Traxxas chassis
- Vehicle size = 30 cm x 57 cm max speed = 5 m/s (11.1 mph)
- Lane width = 60 cm
- Transmit line distance = 3 m
- NTP protocol for clock synchronization (10 ms accuracy)
- PID controller for position trajectory tracking
- 3 types of communication packets
  - Sync (7 Bytes), Request (30 Bytes), Receive (30 Bytes)





#### **IM & Car Schematic**





#### **Video of our Intersection**





#### **Crossroad Position Error**

#### Position Error

- 10 % model mismatch is added.
- An external disturbance of 5% is applied
- Monitor position and velocity of a CAV.



#### **RIM** is Robust

- 10 % model mismatch is added.
- An external disturbance of 5% is applied
- Monitor position and velocity of a CAV.



#### **Robustness of RIM vs Crossroads**

We repeated our experiment 50 times, for different VOAs and TOAs.





## Crossroads needs a Safety Buffer

Since Crossroads does not consider model mismatches and external disturbances, it's not safe!

However, Crossroads can still work if we consider a safety buffer of 3.3X of size of the car.





# **Evaluation using our Simulator**

- Developed in MATLAB<sup>®</sup> [1]
- Scale to multi-lane intersection
- Variable traffic flow rates
- Model vehicle dynamics
- Model network delay



[1] Available Online: https://github.com/mkhayatian/Traffic-Intersection-Simulator-for-Autonomous-Vehicles



#### **Simulator Video**



Available Online: https://github.com/mkhayatian/Traffic-Intersection-Simulator-for-Autonomous-Vehicles



# **Throughput Improvement**

## COMPARING WITH CROSSROADS INCREASE IN THROUGHPUT FOR DIFFERENT FLOW RATES





# **Efficiently Making a Turn**

THROUGHPU-

NORMALIZED .

- Crossroads & VA-IM
  - A constant Velocity is assigned.
  - To avoid rollover, turn speed is low.
  - Vehicles that intend to make a turn will slow down behind vehicles.
- ▶ RIM
  - Vehicles can adjust their speed.

#### Speedup in Throughput for different turn velocity limits





#### **Position of Our Work**

- Query-based (AIM)
- Velocity Assignment

- Crossroads
- ▶ RIM





#### Conclusion

- We explored safety concerns of previous intersection management techniques.
  - Network delay
  - Vehicle dynamics
- We presented a robust intersection management interface for connected autonomous vehicles.
  - Model mismatch
  - External disturbances
  - Efficient



# Question?



This Photo by Unknown Author is licensed under CC BY-SA

